Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (615)

Search Parameters:
Authors = Muhammad Naveed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3084 KiB  
Article
CFD Analysis of a Falling Film Evaporator Using the Low-GWP Refrigerant R1336mzz(Z) in High-Temperature Heat Pump Applications
by Shehryar Ishaque, Muhammad Saeed, Qazi Shahzad Ali, Naveed Ullah, Jedd C. Junio and Man-Hoe Kim
Processes 2025, 13(8), 2398; https://doi.org/10.3390/pr13082398 - 28 Jul 2025
Viewed by 244
Abstract
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components [...] Read more.
High-temperature heat pump systems are essential for industrial processes that usually require high-temperature and high-pressure steam. An efficient design of these systems is critical for minimizing fossil fuel consumption, thereby contributing to a significant reduction in carbon emissions. One of the key components of these systems is the horizontal falling film evaporator, which is commonly employed due to its high thermal efficiency and low refrigerant charge. This study presents a preliminary design of a falling film evaporator to meet the target of the heat duty value of 2.2 MW. The phase-change dynamics inherent to the falling film evaporation process were critically analyzed using ANSYS Fluent (2024 R2). The low-global warming potential refrigerant R1336mzz(Z) was incorporated as a refrigerant on the shell side, while hot water was used in the tubes. The study identified key regions of film flow to maximize vapor production and design optimizations. The discussed performance parameters and operational mechanisms of the evaporator are prevailing features, particularly with the adoption of environmental regulations. Overall, the simulation results offer valuable insights into heat transfer mechanisms and evaporator effectiveness for advancing heat pump technologies in industrial applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Figure 1

27 pages, 5846 KiB  
Article
Agrocybe cylindracea Polysaccharides Ameliorate DSS-Induced Colitis by Restoring Intestinal Barrier Function and Reprogramming Immune Homeostasis via the Gut–Liver Axis
by Aamna Atta, Muhammad Naveed, Mujeeb Ur Rahman, Yamina Alioui, Immad Ansari, Sharafat Ali, Eslam Ghaleb, Nabeel Ahmed Farooqui, Mohammad Abusidu, Yi Xin and Bin Feng
Int. J. Mol. Sci. 2025, 26(14), 6805; https://doi.org/10.3390/ijms26146805 - 16 Jul 2025
Viewed by 389
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease driven by immune dysregulation, microbiota imbalance, and intestinal barrier dysfunction. Despite its global burden, effective therapies remain limited. This study explores the therapeutic potential of Agrocybe cylindracea polysaccharides (ACP) in a dextran sulfate sodium [...] Read more.
Ulcerative colitis (UC) is a chronic inflammatory bowel disease driven by immune dysregulation, microbiota imbalance, and intestinal barrier dysfunction. Despite its global burden, effective therapies remain limited. This study explores the therapeutic potential of Agrocybe cylindracea polysaccharides (ACP) in a dextran sulfate sodium (DSS)-induced murine colitis model. High-performance liquid chromatography (HPLC)-characterized ACP was administered orally to BALB/c mice following colitis induction. ACP treatment significantly reduced Disease Activity Index (DAI) scores, preserved colon length, and restored intestinal barrier integrity by upregulating tight junction proteins. Mechanistically, ACP modulated immune homeostasis, suppressing pro-inflammatory cytokines (IL-17, IL-23, CRP) while enhancing anti-inflammatory mediators (IL-4, TGF-β). Furthermore, ACP inhibited hepatic TLR4/MyD88/NF-κB signaling, attenuated systemic inflammation, and reshaped gut microbiota composition by enriching beneficial taxa and reducing pathogenic Bacteroides. These findings demonstrate ACP multi-target efficacy in colitis, positioning it as a promising natural therapeutic for UC. Full article
Show Figures

Figure 1

19 pages, 1713 KiB  
Article
Potential for Duplexed, In-Tandem gRNA-Mediated Suppression of Two Essential Genes of Tomato Leaf Curl New Delhi Virus in Crop Plants
by Saher Naveed, Judith K. Brown, Muhammad Mubin, Nazir Javed and Muhammad Shah Nawaz-ul-Rehman
Pathogens 2025, 14(7), 679; https://doi.org/10.3390/pathogens14070679 - 10 Jul 2025
Viewed by 723
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) is among the most prevalent and widely distributed begomovirus infecting chili pepper (Capsicum annuum) and tomato in the Indian subcontinent. In this study, a guide RNA (gRNA) sequence-CRISPR-Cas9 approach was used to target and [...] Read more.
Tomato leaf curl New Delhi virus (ToLCNDV) is among the most prevalent and widely distributed begomovirus infecting chili pepper (Capsicum annuum) and tomato in the Indian subcontinent. In this study, a guide RNA (gRNA) sequence-CRISPR-Cas9 approach was used to target and cleave two essential coding regions in the begomovirus genome. The gRNAs were designed to target conserved regions of the ToLCNDV replication-associated protein (rep) gene or ORF AC1, and/or the coat protein (cp) gene or AV1 ORF, respectively. Based on an alignment of 346 representative ToLCNDV genome sequences, all predicted single nucleotide polymorphisms off-target sites were identified and eliminated as potential gRNA targets. Based on the remaining genome regions, four candidate gRNAs were designed and used to build gRNA-Cas9 duplexed constructs, e.g., containing two gRNAs cloned in tandem, in different combinations (1–4). Two contained two gRNAs that targeted the coat protein gene (cp; AV1 ORF), while the other two constructs targeted both the cp and replication-associated protein gene (rep; AC1 ORF). These constructs were evaluated for the potential to suppress ToLCNDV infection in Nicotiana benthamiana plants in a transient expression-transfection assay. Among the plants inoculated with the duplexed gRNA construct designed to cleave ToLCNDV-AV1 or AC1-specific nucleotides, the construct designed to target both the cp (293–993 nt) and rep (1561–2324) showed the greatest reduction in virus accumulation, based on real-time quantitative PCR amplification, and attenuated disease symptoms, compared to plants inoculated with the DNA-A component alone or mock-inoculated, e.g., with buffer. The results demonstrate the potential for gRNA-mediated suppression of ToLCNDV infection in plants by targeting at least two viral coding regions, underscoring the great potential of CRISPR-Cas-mediated abatement of begomovirus infection in numerous crop species. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

25 pages, 5796 KiB  
Article
Enhancing Sustainability and Functionality with Recycled Materials in Multi-Material Additive Manufacturing
by Nida Naveed, Muhammad Naveed Anwar, Mark Armstrong, Furqan Ahmad, Mir Irfan Ul Haq and Glenn Ridley
Sustainability 2025, 17(13), 6105; https://doi.org/10.3390/su17136105 - 3 Jul 2025
Viewed by 448
Abstract
This study presents a novel multi-material additive manufacturing (MMAM) strategy by combining virgin polylactic acid (vPLA) with recycled polylactic acid (rPLA) in a layered configuration to improve both performance and sustainability. Specimens were produced using fused deposition modelling (FDM) with various vPLA: rPLA [...] Read more.
This study presents a novel multi-material additive manufacturing (MMAM) strategy by combining virgin polylactic acid (vPLA) with recycled polylactic acid (rPLA) in a layered configuration to improve both performance and sustainability. Specimens were produced using fused deposition modelling (FDM) with various vPLA: rPLA ratios (33:67, 50:50, and 67:33) and two distinct layering approaches: one with vPLA forming the external layers and rPLA as the core, and a second using the reversed arrangement. Mechanical testing revealed that when vPLA is used as the exterior, printed components exhibit tensile strength and elongation improvements of 10–25% over conventional single-material prints, while the tensile modulus is largely influenced by the distribution of the two materials. Thermal analysis shows that both vPLA and rPLA begin to degrade at approximately 330 °C; however, rPLA demonstrates a higher end-of-degradation temperature (461.7 °C) and increased residue at elevated temperatures, suggesting improved thermal stability due to enhanced crystallinity. Full-field strain mapping, corroborated by digital microscopy (DM) and scanning electron microscopy (SEM), revealed that vPLA-rich regions display more uniform interlayer adhesion with minimal voids or microcracks, whereas rPLA-dominated areas exhibit greater porosity and a higher propensity for brittle failure. These findings highlight the role of optimal material placement in mitigating the inherent deficiencies of recycled polymers. The integrated approach of combining microstructural assessments with full-field strain mapping provides a comprehensive view of interlayer bonding and underlying failure mechanisms. Statistical analysis using analysis of variance (ANOVA) confirmed that both layer placement and material ratio have a significant influence on performance, with high effect sizes highlighting the sensitivity of mechanical properties to these parameters. In addition to demonstrating improvements in mechanical and thermal properties, this work addresses a significant gap in the literature by evaluating the combined effect of vPLA and rPLA in a multi-material configuration. The results emphasise that strategic material distribution can effectively counteract some of the limitations typically associated with recycled polymers, while also contributing to reduced dependence on virgin materials. These outcomes support broader sustainability objectives by enhancing energy efficiency and promoting a circular economy within additive manufacturing (AM). Overall, the study establishes a robust foundation for industrial-scale implementations, paving the way for future innovations in eco-efficient FDM processes. Full article
(This article belongs to the Special Issue 3D Printing for Multifunctional Applications and Sustainability)
Show Figures

Figure 1

13 pages, 686 KiB  
Systematic Review
Thyroid Hormone Therapy for Potential Heart Donors: A Comprehensive Review of Clinical Trials
by Mushood Ahmed, Eeshal Zulfiqar, Sonia Hurjkaliani, Aimen Shafiq, Hafsa Arshad Azam Raja, Areeba Ahsan, Aemen Kamran, Laveeza Fatima, Amna Nadeem, Muhammad Abdullah Naveed, Faizan Ahmed, Hritvik Jain, Tallal Mushtaq Hashmi, Muath Baniowda, Mansimran Singh Dulay, Sivaram Neppala, Himaja Dutt Chigurupati, Ali Hasan, Peter Collins and Raheel Ahmed
Biomedicines 2025, 13(7), 1622; https://doi.org/10.3390/biomedicines13071622 - 2 Jul 2025
Viewed by 1168
Abstract
Background: Due to neurohormonal disturbances that occur following brain death, thyroid hormone therapy has been proposed as a means to enhance cardiac function in brain-dead organ donors. However, it remains unclear whether thyroid hormone administration improves clinical outcomes in potential heart donors. Methods: [...] Read more.
Background: Due to neurohormonal disturbances that occur following brain death, thyroid hormone therapy has been proposed as a means to enhance cardiac function in brain-dead organ donors. However, it remains unclear whether thyroid hormone administration improves clinical outcomes in potential heart donors. Methods: A comprehensive review of clinical trials was conducted to evaluate the impact of thyroid hormone therapy on heart viability and transplantation outcomes. A total of nine randomized controlled trials (RCTs) involving 1189 potential heart donors were included. Results: Thyroid hormone supplementation effectively restored circulating thyroid hormone levels in brain-dead donors. However, findings regarding improvements in cardiac function and transplantation outcomes were inconsistent across studies. While some RCTs reported marginal improvements in hemodynamic parameters and heart transplant viability, these results were not consistently replicated. Furthermore, most studies did not demonstrate a significant enhancement in recipient survival or graft function associated with thyroid hormone therapy. Conclusion: Although thyroid hormone therapy restores thyroid hormone levels in brain-dead donors, current evidence does not consistently support its effectiveness in improving donor heart viability or recipient outcomes. Further research is necessary to clarify the role of thyroid hormone therapy in donor management and its impact on long-term transplant success. Full article
(This article belongs to the Special Issue Advanced Research on Heart Failure and Heart Transplantation)
Show Figures

Figure 1

16 pages, 387 KiB  
Article
Optimizing Low Crude Protein Diets with Coated Cysteamine Hydrochloride and Exogenous Alkaline Protease Supplementation in Broiler Chickens
by Hafiz Abu Bakar Siddique, Ehsaan Ullah Khan, Muhammad Muneeb, Saima Naveed, Elham Assadi Soumeh, Sohail Ahmad, Rashed A. Alhotan, Abdulrahman S. Alharthi and Ala E. Abudabos
Vet. Sci. 2025, 12(7), 622; https://doi.org/10.3390/vetsci12070622 - 27 Jun 2025
Viewed by 451
Abstract
Decreasing crude protein (CP) in broiler diets can improve sustainability but may compromise growth performance. Feed additives like coated cysteamine hydrochloride (CSH) and exogenous alkaline protease (EAP) can enhance protein utilization and promote gut health. While CSH modulates metabolism, EAP improves digestibility, but [...] Read more.
Decreasing crude protein (CP) in broiler diets can improve sustainability but may compromise growth performance. Feed additives like coated cysteamine hydrochloride (CSH) and exogenous alkaline protease (EAP) can enhance protein utilization and promote gut health. While CSH modulates metabolism, EAP improves digestibility, but their combined effects in low CP diets remain unclear. This study examines the synergistic impact of CSH and EAP on broiler growth, gut histology, carcass traits, immune response, and nutrient digestibility, aiming to optimize performance while reducing environmental impact. Six-hundred, 1-day-old broiler Ross-308 chicks (male) were allotted to four treatments, each consisting of six replicates of twenty-five birds, in a factorial arrangement using a completely randomized design. The treatments comprised two inclusion levels of coated CSH (0.2 and 0.4 g/kg with or without EAP (0 and 0.2 g/kg) in reduced CP diets. A ten percent reduction in CP from the standard requirements of Ross-308 (20.7% vs. 23% in the starter, 19.35% vs. 21.5% in the grower, and 17.55% vs. 19.5% in the finisher phase) was made in all the dietary treatments. A notable interaction (p ≤ 0.05) between CSH and EAP was detected in body weight gain (BWG), feed conversion ratio (FCR), carcass characteristics, and gut morphology during the whole study duration. Similarly, nutrient digestibility and immune response were also influenced by the combined use of CSH and EAP. The synergistic use of coated CSH at 0.2 g/kg or 0.4 g/kg with EAP in reduced CP broiler diets can enhance performance, intestinal health, carcass characteristics, immune response, and nutrient digestibility. Implications of these findings in commercial feeding practices could substantially improve the efficiency and sustainability of broiler production systems. Full article
(This article belongs to the Section Veterinary Food Safety and Zoonosis)
Show Figures

Figure 1

22 pages, 5753 KiB  
Article
Leveraging Degradation Events for Enhanced Remaining Useful Life Prediction
by Zeeshan Abbas, Muhammad Sharif, Musrat Hussain, Naeem Hussain, Mehboob Hussain and Naveed Ahmad Khan
Information 2025, 16(7), 542; https://doi.org/10.3390/info16070542 - 26 Jun 2025
Viewed by 352
Abstract
The remaining useful life (RUL) of complex mechanical systems is the primary aspect of prognostics and health management, which is critical for ensuring reliability and safety. Recent developments have shifted towards a data-driven approach, emphasizing empirical insights over expert opinions. The similarity-based data-driven [...] Read more.
The remaining useful life (RUL) of complex mechanical systems is the primary aspect of prognostics and health management, which is critical for ensuring reliability and safety. Recent developments have shifted towards a data-driven approach, emphasizing empirical insights over expert opinions. The similarity-based data-driven approach operates on the premise that systems with similar historical behaviors will likely exhibit similar future behaviors, making it suitable for RUL estimation. Conventionally, most similarity-based approaches utilize all historical data to identify reference systems for RUL estimations. However, not all historical events within a system hold equal significance for RUL. Certain events have a substantial impact on the remaining lifespan of a system. These significant and impactful events are called degradation events (DEs) in this study. Based on the hypothesis that systems undergoing similar DEs may share the same RUL, this study presents an innovative framework for RUL estimation that leverages only the DEs of a test system to identify reference systems that have experienced similar DEs. Furthermore, the model incorporates novel strategies for adjusting the RUL of the reference system based on the initial wear and degradation rates, thereby improving estimation accuracy. The effectiveness of the proposed model, in comparison with similar state-of-the-art models, is demonstrated through experiments on widely recognized jet engine datasets provided by NASA and bearing degradation data from the XJTU-SY. Full article
Show Figures

Figure 1

16 pages, 393 KiB  
Article
From Info Seeker to Startup Superhero: How Information Literacy Influences Entrepreneurial Intention and Skills Among Business Students
by Iqra Bashir, Talha, Muhammad Asif Naveed, Muhammad Zaheer Asghar and Samma Faiz Rasool
Adm. Sci. 2025, 15(7), 239; https://doi.org/10.3390/admsci15070239 - 23 Jun 2025
Cited by 1 | Viewed by 338
Abstract
This study examined the effects of information literacy (IL) on entrepreneurial intention and entrepreneurial skills among business students in Sargodha, Pakistan. A quantitative research design was employed along with a survey method. The data were gathered using a structured and self-administered questionnaire to [...] Read more.
This study examined the effects of information literacy (IL) on entrepreneurial intention and entrepreneurial skills among business students in Sargodha, Pakistan. A quantitative research design was employed along with a survey method. The data were gathered using a structured and self-administered questionnaire to collect data from a sample of 277 students, recruited through a convenient sampling process. Data analysis involved the application of descriptive and inferential statistics in SPSS (Version 21). The results suggested that the business students’ IL levels were not optimal, with no significant differences noted based on age, gender, semester, and academic disciplines. However, IL skills showed a positive correlation with students’ CGPA. The results also showed that IL had a positive effect on entrepreneurial intentions and entrepreneurial skills. In essence, students with higher levels of IL tended to exhibit better entrepreneurial intention and skills compared to those with lower IL levels. These results inform educators and policymakers in shaping policies and practices for business education in general and entrepreneurial education in particular. This research would be a valuable addition to the existing body of knowledge on IL research in the context of academia in general and business and entrepreneurial education in particular, as a limited number of studies have appeared in the existing literature. Full article
Show Figures

Figure 1

19 pages, 4543 KiB  
Article
A Comparison of Cement and Guar Gum Stabilisation of Oxford Clay Under Controlled Wetting and Drying Cycles
by Kanishka Sauis Turrakheil, Syed Samran Ali Shah and Muhammad Naveed
Appl. Sci. 2025, 15(12), 6913; https://doi.org/10.3390/app15126913 - 19 Jun 2025
Viewed by 383
Abstract
Climate-induced wetting and drying (WD) cycles significantly affect the long-term performance of geotechnical structures. This study explores expansive Oxford clay’s mechanical and volumetric responses stabilised with ordinary Portland cement (OPC) and guar gum (GG) under repeated WD cycles. We prepared 108 samples in [...] Read more.
Climate-induced wetting and drying (WD) cycles significantly affect the long-term performance of geotechnical structures. This study explores expansive Oxford clay’s mechanical and volumetric responses stabilised with ordinary Portland cement (OPC) and guar gum (GG) under repeated WD cycles. We prepared 108 samples in total—36 untreated, 36 treated with OPC, and 36 treated with GG. These samples were compacted to 90% of their maximum dry density and subjected to 1, 5, 10, and 15 WD cycles, with nine samples for each treatment at each cycle. During the WD cycles, we monitored volumetric strain and moisture content. Mechanical performance was assessed through unconsolidated undrained triaxial tests conducted at matric suctions of −1500 kPa, −33 kPa, and under saturated conditions. We evaluated the undrained shear strength (Su), secant modulus of elasticity (E50), and modulus of toughness (Ut). The results showed that OPC-treated samples consistently exhibited the highest Su at −1500 kPa across all WD cycles, followed by untreated and GG-treated samples. At −33 kPa, OPC-treated samples again outperformed the others in Su, while GG-treated samples performed better than the untreated ones. Under saturated conditions, GG-treated samples displayed a similar Su to OPC-treated samples, significantly higher than untreated samples. Energy absorption capacity, measured through Ut, peaked for OPC-treated samples at −1500 kPa but favoured GG treatment at −33 kPa and under saturation. X-ray computed tomography (CT) revealed severe degradation in untreated samples, characterised by extensive cracking, minor cracking in OPC-treated samples, and minimal damage in GG-treated samples. This highlights the superior resilience of guar gum to wetting–drying cycles. These findings underscore the potential of guar gum as a sustainable alternative to cement for enhancing the WD resilience of expansive soils, particularly under low-suction or saturated conditions. Full article
Show Figures

Figure 1

1 pages, 128 KiB  
Correction
Correction: Bukhari et al. Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers 2023, 15, 267
by Syed Nasir Abbas Bukhari, Naveed Ahmed, Muhammad Wahab Amjad, Muhammad Ajaz Hussain, Mervat A. Elsherif, Hasan Ejaz and Nasser H. Alotaibi
Polymers 2025, 17(11), 1443; https://doi.org/10.3390/polym17111443 - 23 May 2025
Viewed by 296
Abstract
In the original publication [...] Full article
(This article belongs to the Section Polymer Networks and Gels)
29 pages, 4752 KiB  
Article
Is the Indus Basin Drying? Disparities in the Environmental Flow, Inflow, and Outflow of the Basin
by Naveed Ahmed, Haishen Lu, Bojan Đurin, Nikola Kranjčić, Oluwafemi E. Adeyeri, Muhammad Shahid Iqbal and Youssef M. Youssef
Water 2025, 17(10), 1557; https://doi.org/10.3390/w17101557 - 21 May 2025
Viewed by 1860
Abstract
Under the 1960 Indus Water Treaty, Pakistan owned the Western rivers (Indus, Jhelum, and Chenab) and India the Eastern rivers (Ravi, Suleimanki, and Beas). Pakistan’s per capita water availability will reduce from 5260 m3 to less than 1000 m3 by 2025, [...] Read more.
Under the 1960 Indus Water Treaty, Pakistan owned the Western rivers (Indus, Jhelum, and Chenab) and India the Eastern rivers (Ravi, Suleimanki, and Beas). Pakistan’s per capita water availability will reduce from 5260 m3 to less than 1000 m3 by 2025, causing water stress. The Indus Basin’s water availability was examined at inflow and outflow gauges between 1991 and 2015. The Indus Basin inflow and outflow gauges indicated exceptionally low and high flows before, during, and after floods. Lower flow values vary greatly for the Indus, Chenab, and Jhelum rivers. During Rabi and Kharif, the Indus and Chenab rivers behaved differently. Lower flows (Q90 to Q99) in Western Rivers are more periodic than higher flows (Q90 to Q99) and medium flows (Q90 to Q99). The outflow gauge Kotri reported 35% exceedance with zero flows during pre-flood and post-flood seasons and 50% during flood season, indicating seasonal concerns. Outflow and inflow both fell, particularly after the year 2000, according to data collected over a longer period (1976–2015). Low storage and regulating upstream capacity caused the Indus Basin outflow to reach 28 MAF (million acre feet) between 1976 and 2015, which is 70% more than the permitted 8.6 MAF downstream Kotri gauge. For 65 percent of the year, the Indus Basin does not release any water downstream of Kotri. As a result, the ecosystem relies on an annual influx of at least 123 MAF to sustain itself, and an outflow of 8.6 MAF from the Indus Basin necessitates an inflow of 113.51 MAF. At high-flow seasons, the Indus Basin experiences devastating floods, yet it dries out at a frightening rate before and after floods. The preservation of ecosystems and riparian zones downstream depends on the large environmental flows in eastern rivers. This is achievable only by fully implementing IWT and improving water management practices at western rivers. Full article
Show Figures

Figure 1

42 pages, 1345 KiB  
Article
Unraveling the Nexus Between Competition and Banking Efficiency in an Emerging Economy: A Two-Stage Stochastic Frontier Analysis Framework
by Muhammad Mateen Naveed, Tingli Liu, Sohaib Mustafa and Xiangtang Chen
Systems 2025, 13(5), 354; https://doi.org/10.3390/systems13050354 - 6 May 2025
Viewed by 678
Abstract
Pakistan’s banking sector faces a critical juncture as rising competition intersects with uneven efficiency, jeopardizing financial stability. This study employs a two-stage empirical framework: (1) evaluating cost-efficiency (CE) evolution via a novel stochastic frontier analysis (SFA) framework incorporating desirable and undesirable outputs (e.g., [...] Read more.
Pakistan’s banking sector faces a critical juncture as rising competition intersects with uneven efficiency, jeopardizing financial stability. This study employs a two-stage empirical framework: (1) evaluating cost-efficiency (CE) evolution via a novel stochastic frontier analysis (SFA) framework incorporating desirable and undesirable outputs (e.g., nonperforming loans) and (2) assessing competition’s impact using a novel multi-product Lerner index across loan, deposit, and asset markets, analyzed via a two-step dynamic panel data system generalized method of moments. The first stage reveals an average CE of 81%, with significant ownership-based disparities. The second stage shows that market power enhances CE overall, supporting the banking-specificity hypothesis, suggesting that regulators balance competition with operational scale benefits. However, market power exhibits duality such as elevating CE in high-efficiency quartile banks but reducing it in low-efficiency quartile ones, confirming the efficient structure hypothesis. This highlights the need for policies promoting efficiency-driven consolidation and addressing structural bottlenecks in underperforming banks. Bank-specific and macroeconomic factors also significantly influence CE. The findings offer a policy roadmap to cultivate a competitive, efficient banking ecosystem, fostering sustainable economic growth. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

23 pages, 4539 KiB  
Review
Interactions of Fe and Zn Nanoparticles at Physiochemical, Biochemical, and Molecular Level in Horticultural Crops Under Salt Stress: A Review
by Jinyang Weng, Lu Xu, Pengli Li, Wei Xing, Saeed ur Rahman, Naveed Ahmad, Muhammad Naeem, Jun Lu and Asad Rehman
Horticulturae 2025, 11(4), 442; https://doi.org/10.3390/horticulturae11040442 - 21 Apr 2025
Viewed by 723
Abstract
Salinity is a major abiotic stress that affects the growth and yield of horticultural crops. By raising the levels of sodium and chlorine ions in plant cells, salinity disrupts various morphological, physiological, epigenetic, and genetic traits, leading to excessive oxidative stress production. Through [...] Read more.
Salinity is a major abiotic stress that affects the growth and yield of horticultural crops. By raising the levels of sodium and chlorine ions in plant cells, salinity disrupts various morphological, physiological, epigenetic, and genetic traits, leading to excessive oxidative stress production. Through a variety of redox methods, the plants can partially alleviate this disorder and restore the cell to its initial state. At cell level, cellular redox adaptation plays a potential role coping with salinity stress in all plants; however, if the salt dose is excessive, the plants might not be able to respond appropriately and may even perish from salt stress. Scientists have proposed many solutions to this issue in recent years. One of the newest and most effective technologies to enter this field is nanotechnology, which has produced some extremely impressive outcomes. However, the molecular mechanism and interaction between nanoparticles in horticultural crops remains unclear. In order to take a step toward resolving the current doubts for researchers in this field, we have attempted to conclude the most recent articles regarding how iron oxide nanoparticles (FeO-NPs) and zinc oxide nanoparticles (ZnO–NPs) could aid salt-stressed plants in restoring cellular function under saline conditions in horticulture crops. Further, different inoculation modes of NPs mediated changes in physiological attributes; biochemical and genetic expressions of plants under salt stress have been discussed. This article also discussed the limitations, risk, and challenges of NPs in the food chain. Full article
(This article belongs to the Special Issue Horticulture Plants Stress Physiology—2nd Edition)
Show Figures

Graphical abstract

14 pages, 717 KiB  
Article
Influence of Dietary Supplementation with Yeast Culture and Microencapsulated Butyric Acid on Growth Performance, Carcass Traits, Gut Health, and Immune Status in Broilers
by Azhar Nazir, Ehsaan Ullah Khan, Muhammad Muneeb, Shafqat Nawaz Qaisrani, Saima Naveed, Sohail Ahmad, Rao Muhammad Kashif Yameen, Ali R. Al Sulaiman, Rashed A. Alhotan and Ala E. Abudabos
Vet. Sci. 2025, 12(4), 359; https://doi.org/10.3390/vetsci12040359 - 12 Apr 2025
Viewed by 756
Abstract
The study aimed to examine the effects of dietary supplementation with microencapsulated butyric acid (EBA) and yeast culture (YC) in broiler diets. A total of 450 Ross-308 broiler chicks were selected and randomly allocated to five dietary treatments with six replicates (15 birds [...] Read more.
The study aimed to examine the effects of dietary supplementation with microencapsulated butyric acid (EBA) and yeast culture (YC) in broiler diets. A total of 450 Ross-308 broiler chicks were selected and randomly allocated to five dietary treatments with six replicates (15 birds per replicate) in a complete block design. The experimental diets included the following treatments: (1) Negative control (NC) with basal diet without any additives. (2) Positive control (PC) with basal diet + 0.2 g/kg enramycin. (3) EBA, basal diet + 0.3 g/kg EBA. (4) YC, basal diet + 1 g/kg YC. (5) EBA+YC, basal diet + 0.3 g/kg EBA and 1 g/kg YC. The results indicated a non-significant effect on feed intake (FI) during the experiment periods. However, the EBA+YC treatment exhibited significantly increased body weight gain (BWG), better feed conversion ratio (FCR), and enhanced carcass traits (p < 0.05) compared to other treatments. A significant effect was observed for the immune organ weights and ND titters. Villus height (VH) and the ratio of villus height-to-crypt depth (VH: CD) were noted for EBA+YC across all other treatments. Ileal microbial analysis revealed a significantly lower count of E. coli and Salmonella in the ileal digesta of broiler chickens in the EBA+YC treatment compared to the NC group (p < 0.05). In conclusion, dietary supplementation with any supplement positively influences the broiler’s performance, carcass characteristics, gut health, and immune status over the NC group. More pronounced improvements were obtained from the EBA+YC group, indicating that EBA and YC had a synergistic effect on broilers. Full article
Show Figures

Figure 1

30 pages, 456 KiB  
Article
Classification of the Second Minimal Orbits in the Sharkovski Ordering
by Ugur G. Abdulla, Naveed H. Iqbal, Muhammad U. Abdulla and Rashad U. Abdulla
Axioms 2025, 14(3), 222; https://doi.org/10.3390/axioms14030222 - 17 Mar 2025
Viewed by 408
Abstract
We prove a conjecture on the second minimal odd periodic orbits with respect to Sharkovski ordering for the continuous endomorphisms on the real line. A (2k+1)-periodic orbit [...] Read more.
We prove a conjecture on the second minimal odd periodic orbits with respect to Sharkovski ordering for the continuous endomorphisms on the real line. A (2k+1)-periodic orbit {β1<β2<<β2k+1}, (k3) is called second minimal for the map f, if 2k1 is a minimal period of f|[β1,β2k+1] in the Sharkovski ordering. Full classification of second minimal orbits is presented in terms of cyclic permutations and directed graphs of transitions. It is proved that second minimal odd orbits either have a Stefan-type structure like minimal odd orbits or one of the 4k3 types, each characterized with unique cyclic permutations and directed graphs of transitions with an accuracy up to the inverses. The new concept of second minimal orbits and its classification have an important application towards an understanding of the universal structure of the distribution of the periodic windows in the bifurcation diagram generated by the chaotic dynamics of nonlinear maps on the interval. Full article
Show Figures

Figure 1

Back to TopTop