Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,122)

Search Parameters:
Authors = Li-yun Wang

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 322 KiB  
Article
Characterization of the Best Approximation and Establishment of the Best Proximity Point Theorems in Lorentz Spaces
by Dezhou Kong, Zhihao Xu, Yun Wang and Li Sun
Axioms 2025, 14(8), 600; https://doi.org/10.3390/axioms14080600 - 1 Aug 2025
Viewed by 105
Abstract
Since the monotonicity of the best approximant is crucial to establish partial ordering methods, in this paper, we, respectively, characterize the best approximants in Banach function spaces and Lorentz spaces Γp,w, in which we especially focus on the monotonicity [...] Read more.
Since the monotonicity of the best approximant is crucial to establish partial ordering methods, in this paper, we, respectively, characterize the best approximants in Banach function spaces and Lorentz spaces Γp,w, in which we especially focus on the monotonicity characterizations. We first study monotonicity characterizations of the metric projection operator onto sublattices in general Banach function spaces by the property Hg. The sufficient and necessary conditions for monotonicity of the metric projection onto cones and sublattices are then, respectively, established in Γp,w. The Lorentz spaces Γp,w are also shown to be reflexive under the condition RBp, which is the basis for the existence of the best approximant. As applications, by establishing the partial ordering methods based on the obtained monotonicity characterizations, the solvability and approximation theorems for best proximity points are deduced without imposing any contractive and compact conditions in Γp,w. Our results extend and improve many previous results in the field of the approximation and partial ordering theory. Full article
(This article belongs to the Section Mathematical Analysis)
15 pages, 2424 KiB  
Article
Cyanuric Chloride with the s-Triazine Ring Fabricated by Interfacial Polymerization for Acid-Resistant Nanofiltration
by Zhuangzhuang Tian, Yun Yin, Jiandong Wang, Xiuling Ao, Daijun Liu, Yang Jin, Jun Li and Jianjun Chen
Membranes 2025, 15(8), 231; https://doi.org/10.3390/membranes15080231 - 1 Aug 2025
Viewed by 262
Abstract
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane [...] Read more.
Nanofiltration (NF) is considered a competitive purification method for acidic stream treatments. However, conventional thin-film composite NF membranes degrade under acid exposures, limiting their applications in industrial acid treatment. For example, wet-process phosphoric acid contains impurities of multivalent metal ions, but NF membrane technologies for impurity removal under harsh conditions are still immature. In this work, we develop a novel strategy of acid-resistant nanofiltration membranes based on interfacial polymerization (IP) of polyethyleneimine (PEI) and cyanuric chloride (CC) with the s-triazine ring. The IP process was optimized by orthogonal experiments to obtain positively charged PEI-CC membranes with a molecular weight cut-off (MWCO) of 337 Da. We further applied it to the approximate industrial phosphoric acid purification condition. In the tests using a mixed solution containing 20 wt% P2O5, 2 g/L Fe3+, 2 g/L Al3+, and 2 g/L Mg2+ at 0.7 MPa and 25 °C, the NF membrane achieved 56% rejection of Fe, Al, and Mg and over 97% permeation of phosphorus. In addition, the PEI-CC membrane exhibited excellent acid resistance in the 48 h dynamic acid permeation experiment. The simple fabrication procedure of PEI-CC membrane has excellent acid resistance and great potential for industrial applications. Full article
(This article belongs to the Special Issue Nanofiltration Membranes for Precise Separation)
Show Figures

Figure 1

19 pages, 4397 KiB  
Article
Thermal History-Dependent Deformation of Polycarbonate: Experimental and Modeling Insights
by Maoyuan Li, Haitao Wang, Guancheng Shen, Tianlun Huang and Yun Zhang
Polymers 2025, 17(15), 2096; https://doi.org/10.3390/polym17152096 - 30 Jul 2025
Viewed by 262
Abstract
The deformation behavior of polymers is influenced not only by service conditions such as temperature and the strain rate but also significantly by the formation process. However, existing simulation frameworks typically treat injection molding and the in-service mechanical response separately, making it difficult [...] Read more.
The deformation behavior of polymers is influenced not only by service conditions such as temperature and the strain rate but also significantly by the formation process. However, existing simulation frameworks typically treat injection molding and the in-service mechanical response separately, making it difficult to capture the impact of the thermal history on large deformation behavior. In this study, the deformation behavior of injection-molded polycarbonate (PC) was investigated by accounting for its thermal history during formation, achieved through combined experimental characterization and constitutive modeling. PC specimens were prepared via injection molding followed by annealing at different molding/annealing temperatures and durations. Uniaxial tensile tests were conducted using a Zwick universal testing machine at strain rates of 10−3–10−1 s−1 and temperatures ranging from 293 K to 353 K to obtain stress–strain curves. The effects of the strain rate, testing temperature, and annealing conditions were thoroughly examined. Building upon a previously proposed phenomenological model, a new constitutive framework incorporating thermal history effects during formation was developed to characterize the large deformation behavior of PC. This model was implemented in ABAQUS/Explicit using a user-defined material subroutine. Predicted stress–strain curves exhibit excellent agreement with the experimental data, accurately reproducing elastic behavior, yield phenomena, and strain-softening and strain-hardening stages. Full article
Show Figures

Figure 1

15 pages, 6014 KiB  
Article
Predictive Analysis of Ventilation Dust Removal Time in Tunnel Blasting Operations Based on Numerical Simulation and Orthogonal Design Method
by Yun Peng, Shunchuan Wu, Yongjun Li, Lei He and Pengfei Wang
Processes 2025, 13(8), 2415; https://doi.org/10.3390/pr13082415 - 30 Jul 2025
Viewed by 281
Abstract
To enhance the understanding of dust diffusion laws in tunnel blasting operations of metal mines and determine optimal ventilation dust removal times, a scaled physical model of a metal mine tunneling face under the China Zijin Mining Group was established based on field [...] Read more.
To enhance the understanding of dust diffusion laws in tunnel blasting operations of metal mines and determine optimal ventilation dust removal times, a scaled physical model of a metal mine tunneling face under the China Zijin Mining Group was established based on field measurements. Numerical simulation was employed to investigate airflow movement and dust migration in the tunneling roadway, and the fundamental features of airflow field and dust diffusion laws after tunnel blasting operations in the fully mechanized excavation face were revealed. The effects of three main factors included airflow rate (Q), ventilation distance (S), and tunnel length (L) on the dust removal time after tunnel blasting operations were investigated based on the orthogonal design method. Results indicated that reducing the dust concentration in the roadway to 10 mg/m3 required 53 min. The primary factors influencing dust removal time, in order of significance, were determined to be L, Q, and S. The lowest dust concentration occurs when the ventilation distance was 25 m. A predictive model for dust removal time after tunnel blasting operations was developed, establishing the relationship between dust removal time and the three factors as T = 20.7Q−0.73S0.19L0.86. Subsequent on-site validation confirmed the high accuracy of the predictive model, demonstrating its efficacy for practical applications. This study contributes a novel integration of orthogonal experimental design and validated CFD modeling to predict ventilation dust removal time, offering a practical and theoretically grounded approach for tunnel ventilation optimization. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

21 pages, 2807 KiB  
Article
Phage Therapy Enhances Survival, Immune Response, and Metabolic Resilience in Pacific White Shrimp (Litopenaeus vannamei) Challenged with Vibrio parahaemolyticus
by Chao Zeng, Long Qi, Chao-Li Guan, Yu-Lin Chang, Yu-Yun He, Hong-Zheng Zhao, Chang Wang, Yi-Ran Zhao, Yi-Chen Dong and Guo-Fang Zhong
Fishes 2025, 10(8), 366; https://doi.org/10.3390/fishes10080366 - 30 Jul 2025
Viewed by 328
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at [...] Read more.
Acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus, is a major threat to global shrimp aquaculture. In this study, we evaluated the therapeutic effects of phage therapy in Litopenaeus vannamei challenged with AHPND-causing Vibrio parahaemolyticus. Phage application at various concentrations significantly improved shrimp survival, with the 1 ppm group demonstrating the highest survival rate. Enzymatic assays revealed that phage-treated shrimp exhibited enhanced immune enzyme activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM). In addition, antioxidant defenses such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and total antioxidant capacity (T-AOC) significantly improved, accompanied by reduced malondialdehyde (MDA) levels. Serum biochemical analyses demonstrated marked improvements in lipid metabolism, particularly reductions in triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), alongside higher levels of beneficial high-density lipoprotein (HDL). Transcriptomic analysis identified 2274 differentially expressed genes (DEGs), notably enriched in pathways involving fatty acid metabolism, peroxisome functions, lysosomes, and Toll-like receptor (TLR) signaling. Specifically, phage treatment upregulated immune and metabolic regulatory genes, including Toll-like receptor 4 (TLR4), myeloid differentiation primary response protein 88 (MYD88), interleukin-1β (IL-1β), nuclear factor erythroid 2-related factor 2 (Nrf2), and peroxisome proliferator-activated receptor (PPAR), indicating activation of innate immunity and antioxidant defense pathways. These findings suggest that phage therapy induces protective immunometabolic adaptations beyond its direct antibacterial effects, thereby providing an ecologically sustainable alternative to antibiotics for managing bacterial diseases in shrimp aquaculture. Full article
(This article belongs to the Special Issue Healthy Aquaculture and Disease Control)
Show Figures

Figure 1

19 pages, 6906 KiB  
Article
Deep Neural-Assisted Flexible MXene-Ag Composite Strain Sensor with Crack Dual Conductive Network for Human Motion Sensing
by Junheng Fu, Zichen Xia, Haili Zhong, Xiangmou Ding, Yijie Lai, Sisi Li, Mengjie Zhang, Minxia Wang, Yuhao Zhang, Gangjin Huang, Fei Zhan, Shuting Liang, Yun Zeng, Lei Wang and Yang Zhao
Materials 2025, 18(15), 3537; https://doi.org/10.3390/ma18153537 - 28 Jul 2025
Viewed by 355
Abstract
Developing stretchable strain sensors that combine both high sensitivity and a wide linear range is a critical requirement for health electronics, yet it remains challenging to meet the practical demands of daily health monitoring. This study proposes a novel heterogeneous surface strategy by [...] Read more.
Developing stretchable strain sensors that combine both high sensitivity and a wide linear range is a critical requirement for health electronics, yet it remains challenging to meet the practical demands of daily health monitoring. This study proposes a novel heterogeneous surface strategy by in situ silver deposition on modified PDMS followed by MXene spray coating, constructing a multilevel microcrack strain sensor (MAP) using silver nanoparticles and MXene. This innovative multilevel heterogeneous microcrack structure forms a dual conductive network, which demonstrates excellent detection performance within GFmax = 487.3 and response time ≈65 ms across various deformation variables. And the seamless integration of the sensor arrays was designed and employed for the detection of human activities without sacrificing biocompatibility and comfort. Furthermore, by adopting advanced deep learning technology, these sensor arrays could identify different joint movements with an accuracy of up to 95%. These results provide a promising example for designing high-performance stretchable strain sensors and intelligent recognition systems. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

21 pages, 5527 KiB  
Article
SGNet: A Structure-Guided Network with Dual-Domain Boundary Enhancement and Semantic Fusion for Skin Lesion Segmentation
by Haijiao Yun, Qingyu Du, Ziqing Han, Mingjing Li, Le Yang, Xinyang Liu, Chao Wang and Weitian Ma
Sensors 2025, 25(15), 4652; https://doi.org/10.3390/s25154652 - 27 Jul 2025
Viewed by 327
Abstract
Segmentation of skin lesions in dermoscopic images is critical for the accurate diagnosis of skin cancers, particularly malignant melanoma, yet it is hindered by irregular lesion shapes, blurred boundaries, low contrast, and artifacts, such as hair interference. Conventional deep learning methods, typically based [...] Read more.
Segmentation of skin lesions in dermoscopic images is critical for the accurate diagnosis of skin cancers, particularly malignant melanoma, yet it is hindered by irregular lesion shapes, blurred boundaries, low contrast, and artifacts, such as hair interference. Conventional deep learning methods, typically based on UNet or Transformer architectures, often face limitations in regard to fully exploiting lesion features and incur high computational costs, compromising precise lesion delineation. To overcome these challenges, we propose SGNet, a structure-guided network, integrating a hybrid CNN–Mamba framework for robust skin lesion segmentation. The SGNet employs the Visual Mamba (VMamba) encoder to efficiently extract multi-scale features, followed by the Dual-Domain Boundary Enhancer (DDBE), which refines boundary representations and suppresses noise through spatial and frequency-domain processing. The Semantic-Texture Fusion Unit (STFU) adaptively integrates low-level texture with high-level semantic features, while the Structure-Aware Guidance Module (SAGM) generates coarse segmentation maps to provide global structural guidance. The Guided Multi-Scale Refiner (GMSR) further optimizes boundary details through a multi-scale semantic attention mechanism. Comprehensive experiments based on the ISIC2017, ISIC2018, and PH2 datasets demonstrate SGNet’s superior performance, with average improvements of 3.30% in terms of the mean Intersection over Union (mIoU) value and 1.77% in regard to the Dice Similarity Coefficient (DSC) compared to state-of-the-art methods. Ablation studies confirm the effectiveness of each component, highlighting SGNet’s exceptional accuracy and robust generalization for computer-aided dermatological diagnosis. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

11 pages, 3019 KiB  
Article
DNA Metabarcoding Reveals Seasonal Variations in Crop-Foraging Behavior of Wild Rhesus Macaques (Macaca mulatta)
by Yun Wang, Hongjia Li, Gongyuan Shi, Heqin Cao, Manfang He and Haijun Su
Diversity 2025, 17(8), 517; https://doi.org/10.3390/d17080517 - 26 Jul 2025
Viewed by 237
Abstract
The ecological drivers of wildlife crop-foraging behavior—whether as a compensatory response to natural resource scarcity or as opportunistic exploitation of anthropogenic food sources—remain poorly understood in human–wildlife conflict research. Traditional methodologies, which primarily rely on direct observation and morphological identification, have limitations in [...] Read more.
The ecological drivers of wildlife crop-foraging behavior—whether as a compensatory response to natural resource scarcity or as opportunistic exploitation of anthropogenic food sources—remain poorly understood in human–wildlife conflict research. Traditional methodologies, which primarily rely on direct observation and morphological identification, have limitations in comprehensively quantifying wildlife dietary composition, particularly in accurately distinguishing between morphologically similar plant species and conducting precise quantitative analyses. This study utilized DNA metabarcoding technology (rbcL gene markers) to identify and quantify plant dietary components through fecal sample analysis, systematically investigating the dietary composition and patterns of agricultural resource utilization of wild rhesus macaques (Macaca mulatta) in human–wildlife interface zones of southwestern China. A total of 29 rhesus macaque fecal samples were analyzed (15 from spring and 14 from winter), identifying 142 plant genera, comprising 124 wild plant genera, and 18 crop genera. The results revealed distinct seasonal foraging patterns: crops accounted for 32.11% of the diet in winter compared to 7.66% in spring. Notably, rhesus macaques continued to consume crops even during spring when wild resources were relatively abundant, challenging the traditional hypothesis driven by resource scarcity and suggesting that crop-foraging behavior may reflect an opportunistic, facultative resource selection strategy. This study demonstrates the significant value of DNA metabarcoding technology in wildlife foraging behavior research, providing scientific evidence for understanding human–primate conflict ecology and developing effective management strategies. Full article
Show Figures

Figure 1

20 pages, 3985 KiB  
Article
Activity Analysis and Inhibition Mechanism of Four Novel Angiotensin I-Converting Enzyme Inhibitory Peptides Prepared from Flammulina velutipes by Enzymatic Hydrolysis
by Yajie Zhang, Xueqi Zhao, Xia Ma, Jiaqi Li, Xiaoyu Ye, Xuerui Wang, Wenwei Zhang and Jianmin Yun
Foods 2025, 14(15), 2619; https://doi.org/10.3390/foods14152619 - 26 Jul 2025
Viewed by 232
Abstract
In order to innovatively develop high-activity ACE inhibitory peptides from edible fungi, the conditions for a double-enzymatic hydrolysis preparation of ACE inhibitory peptides from Flammulina velutipes were optimized by response surface methodology. After purification by macroporous resin, gel chromatography, and RP-HPLC, a crude [...] Read more.
In order to innovatively develop high-activity ACE inhibitory peptides from edible fungi, the conditions for a double-enzymatic hydrolysis preparation of ACE inhibitory peptides from Flammulina velutipes were optimized by response surface methodology. After purification by macroporous resin, gel chromatography, and RP-HPLC, a crude peptide fraction was obtained; its ACE inhibition rate was 85.73 ± 0.95% (IC50 = 0.83 ± 0.09 mg/mL). Based on LC-MS/MS sequencing, the four novel peptides, namely, FAGGP, FDGY, FHPGY, and WADP, were screened by computer analysis and molecular docking technology. The four peptides exhibited a binding energy between −9.4 and −10.3 kcal/mol, and formed hydrogen bonds with Tyr523, Ala354, and Glu384 in the S1 pocket, Tyr520 and His353 in the S2 pocket, and His383 in the HEXXH zinc-coordinating motif of ACE, indicating their good affinity with the ACE active site. The IC50 values of the four ACE inhibitory peptides were 29.17, 91.55, 14.79, and 41.27 μM, respectively, suggesting that these peptides could potentially contribute to the development of new antihypertensive products. Full article
(This article belongs to the Special Issue Bioactive Peptides and Probiotic Bacteria: Modulators of Human Health)
Show Figures

Graphical abstract

18 pages, 2943 KiB  
Article
Cadmium Inhibits Proliferation of Human Bronchial Epithelial BEAS-2B Cells Through Inducing Ferroptosis via Targeted Regulation of the Nrf2/SLC7A11/GPX4 Pathway
by Huan Li, Zixin Qiu, Long Chen, Tianbao Zhang, Diandian Wei, Xue Chen and Yun Wang
Int. J. Mol. Sci. 2025, 26(15), 7204; https://doi.org/10.3390/ijms26157204 - 25 Jul 2025
Viewed by 251
Abstract
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells [...] Read more.
Cadmium (Cd)-induced pulmonary toxicity is closely associated with ferroptosis, a regulated form of cell death characterized by iron-dependent lipid peroxidation (LPO). Luteolin (Lut) is a natural flavonoid compound that exists in many plants. In this study, we used human bronchial epithelial BEAS-2B cells to explore the impact of ferroptosis in the inhibition of Cd-induced BEAS-2B cells proliferation. BEAS-2B cells were exposed to Cd (5 μM) with/without Lut (10 μM), ferroptosis modulators (Ferrostatin-1 (Fer-1)/Erastin), or nuclear factor erythroid 2-related factor 2 (Nrf2) regulators (tert-butylhydroquinone (TBHQ)/ML385). Viability, iron content, reactive oxygen species (ROS), LPO, mitochondrial membrane potential (MMP), and glutathione peroxidase (GSH-PX) activity were assessed. Exposure to Cd significantly decreased cell viability, increased intracellular iron levels, ROS production, and LPO activity, while simultaneously reducing MMP and GSH-PX activity. Fer-1 mitigated Cd-induced cytotoxicity, but Erastin intensified these effects. Mechanistically, Cd exposure suppressed the Nrf2/Solute Carrier Family 7 Member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway, which plays a crucial role in maintaining redox homeostasis. Activation of Nrf2 using TBHQ mitigated oxidative stress and upregulated the expression of key proteins within this pathway, while inhibition of Nrf2 with ML385 exacerbated cellular damage. Notably, Lut treatment could significantly alleviate Cd-induced cytotoxicity, oxidative stress, and downregulation of Nrf2/SLC7A11/GPX4 proteins. These findings demonstrate that ferroptosis is a critical mechanism underlying Cd-mediated lung epithelial injury and identify Lut as a promising therapeutic candidate via its activation of Nrf2-driven antioxidant defense mechanisms. This study provides novel insights into molecular targets for the prevention and treatment of Cd-associated pulmonary disorders. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

19 pages, 1307 KiB  
Article
Three-Dimensional Non-Stationary MIMO Channel Modeling for UAV-Based Terahertz Wireless Communication Systems
by Kai Zhang, Yongjun Li, Xiang Wang, Zhaohui Yang, Fenglei Zhang, Ke Wang, Zhe Zhao and Yun Wang
Entropy 2025, 27(8), 788; https://doi.org/10.3390/e27080788 - 25 Jul 2025
Viewed by 201
Abstract
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between [...] Read more.
Terahertz (THz) wireless communications can support ultra-high data rates and secure wireless links with miniaturized devices for unmanned aerial vehicle (UAV) communications. In this paper, a three-dimensional (3D) non-stationary geometry-based stochastic channel model (GSCM) is proposed for multiple-input multiple-output (MIMO) communication links between the UAVs in the THz band. The proposed channel model considers not only the 3D scattering and reflection scenarios (i.e., reflection and scattering fading) but also the atmospheric molecule absorption attenuation, arbitrary 3D trajectory, and antenna arrays of both terminals. In addition, the statistical properties of the proposed GSCM (i.e., the time auto-correlation function (T-ACF), space cross-correlation function (S-CCF), and Doppler power spectrum density (DPSD)) are derived and analyzed under several important UAV-related parameters and different carrier frequencies, including millimeter wave (mmWave) and THz bands. Finally, the good agreement between the simulated results and corresponding theoretical ones demonstrates the correctness of the proposed GSCM, and some useful observations are provided for the system design and performance evaluation of UAV-based air-to-air (A2A) THz-MIMO wireless communications. Full article
Show Figures

Figure 1

17 pages, 7296 KiB  
Article
The Expression Pattern of the Splice Variants of Coxsackievirus and Adenovirus Receptor Impacts CV-B3-Induced Encephalitis and Myocarditis in Neonatal Mice
by Xinglong Zhang, Xin Zhang, Yifan Zhang, Heng Li, Huiwen Zheng, Jingjing Wang, Yun Liao, Li Yu, Dandan Li, Heng Zhao, Jiali Li, Zihan Zhang, Haijing Shi and Longding Liu
Int. J. Mol. Sci. 2025, 26(15), 7163; https://doi.org/10.3390/ijms26157163 - 24 Jul 2025
Viewed by 178
Abstract
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, [...] Read more.
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, we used young Balb/c mice at three developmental stages (7-, 14-, and 30-day-old mice) to investigate CV-B3 pathogenesis. Our findings revealed that 7-day-old mice exhibited substantial infection susceptibility and pathological severity compared to older mice. Critically, an age-dependent analysis showed a progressive decline in the expression of CV-B3-binding Coxsackievirus and Adenovirus Receptor (CAR) splice variants (CAR1 and CAR2) at both the transcriptional and translational levels as the mice matured from 7 to 30 days. These receptor isoforms demonstrated a direct correlation with viral replication efficiency in younger hosts. Concurrently, aging was associated with a rise in non-binding CAR variants (CAR3 and CAR4). During CV-B3 infection, the abundance of CAR1/CAR2 in young mice facilitated accelerated viral proliferation, coupled with the hyperactivation of the NLRP3 inflammasome and the expansion of IL-17-producing γδT cells (γδT17 cells). This cascade triggered excessive production of proinflammatory cytokines (IL-1β, IL-18, and IL-17), culminating in pronounced inflammatory infiltrates within cardiac and cerebral tissues. These findings establish NLRP3 inflammasome dysregulation as a critical determinant of CV-B3-induced tissue damage and provide novel insights into the heightened susceptibility to CV-B infection during early life and its associated severe disease rates. Full article
Show Figures

Figure 1

33 pages, 2217 KiB  
Review
A Comprehensive Review of Artificial Intelligence-Based Algorithms for Predicting the Remaining Useful Life of Equipment
by Weihao Li, Jianhua Chen, Sijuan Chen, Peilin Li, Bing Zhang, Ming Wang, Ming Yang, Jipu Wang, Dejian Zhou and Junsen Yun
Sensors 2025, 25(14), 4481; https://doi.org/10.3390/s25144481 - 18 Jul 2025
Viewed by 511
Abstract
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which [...] Read more.
In the contemporary big data era, data-driven prognostic and health management (PHM) methodologies have emerged as indispensable tools for ensuring the secure and reliable operation of complex equipment systems. Central to these methodologies is the accurate prediction of remaining useful life (RUL), which serves as a pivotal cornerstone for effective maintenance and operational decision-making. While significant advancements in computer hardware and artificial intelligence (AI) algorithms have catalyzed substantial progress in AI-based RUL prediction, extant research frequently exhibits a narrow focus on specific algorithms, neglecting a comprehensive and comparative analysis of AI techniques across diverse equipment types and operational scenarios. This study endeavors to bridge this gap through the following contributions: (1) A rigorous analysis and systematic categorization of application scenarios for equipment RUL prediction, elucidating their distinct characteristics and requirements. (2) A comprehensive summary and comparative evaluation of several AI algorithms deemed suitable for RUL prediction, delineating their respective strengths and limitations. (3) An in-depth comparative analysis of the applicability of AI algorithms across varying application contexts, informed by a nuanced understanding of different application scenarios and AI algorithm research. (4) An insightful discussion on the current challenges confronting AI-based RUL prediction technology, coupled with a forward-looking examination of its future prospects. By furnishing a meticulous and holistic understanding of the traits of various AI algorithms and their contextual applicability, this study aspires to facilitate the attainment of optimal application outcomes in the realm of equipment RUL prediction. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

14 pages, 5679 KiB  
Article
Characterization of Physicochemical Quality and Volatiles in Donkey Meat Hotpot Under Different Boiling Periods
by Lingyun Sun, Mengmeng Mi, Shujuan Sun, Lu Ding, Yan Zhao, Mingxia Zhu, Yun Wang, Muhammad Zahoor Khan, Changfa Wang and Mengmeng Li
Foods 2025, 14(14), 2530; https://doi.org/10.3390/foods14142530 - 18 Jul 2025
Viewed by 410
Abstract
Hotpot dishes are widely favored by consumers for their flavor profiles developed during the cooking process. This study investigated the quality characteristics and volatile compounds (VOCs) of donkey meat slices across varying boiling durations (0–42 s) using gas chromatography–ion mobility spectrometry (GC-IMS). The [...] Read more.
Hotpot dishes are widely favored by consumers for their flavor profiles developed during the cooking process. This study investigated the quality characteristics and volatile compounds (VOCs) of donkey meat slices across varying boiling durations (0–42 s) using gas chromatography–ion mobility spectrometry (GC-IMS). The results demonstrated that donkey meat boiled for 12–18 s exhibited optimal characteristics in terms of meat retention, color parameters, shear force values, and pH measurements. Forty-eight distinct VOCs were identified in the samples, with aldehydes, alcohols, ketones, acids, furans, and esters representing the predominant categories. Among these compounds, 18 were identified as characteristic aroma compounds, including 3-hexanone, 2, 3-butanedione, and oct-1-en-3-ol. Samples subjected to different boiling durations were successfully differentiated through topographic plots, fingerprint mapping, and multivariate analysis. The abundance and diversity of VOCs reached peak values in samples boiled for 12–18 s. Furthermore, 28 VOCs were identified as potential markers for distinguishing between different boiling durations, including 2-butoxyethanol D, benzaldehyde D, and (E)-2-pentenal D. This study concludes that a boiling duration of 12–18 s for donkey meat during hotpot preparation yields optimal quality characteristics and volatile flavor compound profiles and provides valuable insights for standardizing cooking parameters in hotpot preparations of other meat products. It is necessary to confirm this finding with sensory evaluations in further research. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

14 pages, 4424 KiB  
Article
Electrochemical and Kinetic Performance of Low-Cobalt and Cobalt-Free Rare-Earth AB5-Type Hydrogen Storage Alloys
by Yingying Shen, Fengji Zhang, Hengyu Ma, Yun Zhao, Yong Wang, Xinfeng Wang, Xiuyan Li, Youcheng Luo and Bingang Lu
Materials 2025, 18(14), 3317; https://doi.org/10.3390/ma18143317 - 14 Jul 2025
Viewed by 286
Abstract
To address the high cost of cobalt in rare-earth hydrogen storage alloys, this study developed cost-effective low-cobalt and cobalt-free AB5-type alloys. The results demonstrate that all synthesized alloys displayed a single-phase LaNi5 structure possessing a homogeneous elemental distribution. Low-cobalt (La, [...] Read more.
To address the high cost of cobalt in rare-earth hydrogen storage alloys, this study developed cost-effective low-cobalt and cobalt-free AB5-type alloys. The results demonstrate that all synthesized alloys displayed a single-phase LaNi5 structure possessing a homogeneous elemental distribution. Low-cobalt (La, Ce) (Ni, Co, Mn, Al)5 alloy 4SC and cobalt-free (La, Ce) (Ni, Mn, Al)5 alloy 7D exhibited similarly excellent electrochemical performance, including high discharge capacity, long cycle life, and superior high-rate discharge (HRD) capability. In addition, the kinetic test results show that the exchange current densities of these two alloys were quite similar, measuring 302.97 mA g−1 and 317.70 mA g−1, respectively. However, the hydrogen diffusion coefficient of 7D was significantly higher than that of 4SC, reaching 9.45 × 10−10 cm2 s−1, while that of 4SC was only 5.88 × 10−10 cm2/s. This work establishes a theoretical foundation for industrial-scale and cost-effective AB5-type hydrogen storage alloys, offering significant commercial potential. Full article
(This article belongs to the Special Issue Advances in Efficient Utilization of Metallurgical Solid Waste)
Show Figures

Figure 1

Back to TopTop