Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (1,682)

Search Parameters:
Authors = Lei Guo

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 755 KiB  
Article
Effects of Dietary Tannic Acid and Tea Polyphenol Supplementation on Rumen Fermentation, Methane Emissions, Milk Protein Synthesis and Microbiota in Cows
by Rong Zhao, Jiajin Sun, Yitong Lin, Haichao Yan, Shiyue Zhang, Wenjie Huo, Lei Chen, Qiang Liu, Cong Wang and Gang Guo
Microorganisms 2025, 13(8), 1848; https://doi.org/10.3390/microorganisms13081848 (registering DOI) - 7 Aug 2025
Abstract
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given [...] Read more.
To develop sustainable strategies for mitigating ruminal methanogenesis and improving nitrogen efficiency in dairy systems, this study investigated how low-dose tannic acid (T), tea polyphenols (TP), and their combination (T+TP; 50:50) modulate rumen microbiota and function. A sample of Holstein cows were given four dietary treatments: (1) control (basal diet); (2) T (basal diet + 0.4% DM tannic acid); (3) TP (basal diet + 0.4% DM tea polyphenols); and (4) T+TP (basal diet + 0.2% DM tannic acid + 0.2% DM tea polyphenols). We comprehensively analyzed rumen fermentation, methane production, nutrient digestibility, milk parameters, and microbiota dynamics. Compared with the control group, all diets supplemented with additives significantly reduced enteric methane production (13.68% for T, 11.40% for TP, and 10.89% for T+TP) and significantly increased milk protein yield. The crude protein digestibility significantly increased in the T group versus control. The results did not impair rumen health or fiber digestion. Critically, microbiota analysis revealed treatment-specific modulation: the T group showed decreased Ruminococcus flavefaciens abundance, while all tannin treatments reduced abundances of Ruminococcus albus and total methanogens. These microbial shifts corresponded with functional outcomes—most notably, the T+TP synergy drove the largest reductions in rumen ammonia-N (34.5%) and milk urea nitrogen (21.1%). Supplementation at 0.4% DM, particularly the T+TP combination, effectively enhances nitrogen efficiency and milk protein synthesis while reducing methane emissions through targeted modulation of key rumen microbiota populations, suggesting potential sustainability benefits linked to altered rumen fermentation. Full article
(This article belongs to the Section Veterinary Microbiology)
21 pages, 767 KiB  
Article
Promoting Sustainable Mobility on Campus: Uncovering the Behavioral Mechanisms Behind Non-Compliant E-Bike Use Among University Students
by Huihua Chen, Yongqi Guo and Lei Li
Sustainability 2025, 17(15), 7147; https://doi.org/10.3390/su17157147 - 7 Aug 2025
Abstract
Electric bikes (e-bikes) offer a low-carbon, space-efficient solution for campus mobility, yet their sustainable potential is increasingly challenged by patterns of non-compliant use, including speeding, informal parking, and unauthorized charging. This study integrates the Theory of Planned Behavior (TPB) and the Technology Acceptance [...] Read more.
Electric bikes (e-bikes) offer a low-carbon, space-efficient solution for campus mobility, yet their sustainable potential is increasingly challenged by patterns of non-compliant use, including speeding, informal parking, and unauthorized charging. This study integrates the Theory of Planned Behavior (TPB) and the Technology Acceptance Model (TAM) to examine the cognitive and contextual factors that shape such behaviors among university students. Drawing on a survey of 408 e-bike users and structural equation modeling, the results show that non-compliance is primarily driven by perceived usefulness, ease of action, and behavioral feasibility, with affective and normative factors playing indirect, reinforcing roles. Importantly, actual behavior is influenced not only by intention but also by students’ perceived capacity to act within low-enforcement environments. These findings highlight the need to align behavioral perceptions with sustainability goals. The study contributes to sustainable mobility governance by clarifying key psychological pathways and offering targeted insights for designing perception-sensitive interventions in campus transport systems. Furthermore, by promoting compliance-oriented campus mobility, this research highlights a pathway toward enhancing the resilience of transport systems through behavioral adaptation within semi-regulated environments. Full article
Show Figures

Figure 1

20 pages, 3673 KiB  
Article
Does Short-Distance Migration Facilitate the Recovery of Black-Necked Crane Populations?
by Le Yang, Lei Xu, Waner Liang, Jia Guo, Yongbing Yang, Cai Lyu, Shengling Zhou, Qing Zeng, Yifei Jia and Guangchun Lei
Animals 2025, 15(15), 2304; https://doi.org/10.3390/ani15152304 - 6 Aug 2025
Abstract
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals [...] Read more.
Understanding the migratory strategies of plateau-endemic species is essential for informing effective conservation, especially under climate change. The Black-necked Crane (Grus nigricollis), a high-altitude specialist, has shown notable population growth in recent years. We analysed satellite tracking data from 16 individuals of a western subpopulation in the lake basin region of northern Tibet (2021–2024), focusing on migration patterns, stopover use, and habitat selection. This subpopulation exhibited short-distance (mean: 284.21 km), intra-Tibet migrations with low reliance on stopover sites. Autumn migration was shorter, more direct, higher in altitude, and slower in speed than spring migration. Juveniles used smaller, more fragmented habitats than subadults, and their spatial range expanded over time. Given these patterns, we infer that the short-distance migration strategy may reduce energetic demands and mortality risks while increasing route flexibility—characteristics that may benefit population growth. We refer to this as a low-energy, high-efficiency migration strategy, which we hypothesise could support faster population growth and enhance resilience to environmental change. We recommend prioritizing the conservation of short-distance migration corridors, such as the typical lake basin area in northern Tibet–Yarlung Tsangpo River system, which may help sustain plateau-endemic migratory populations under future climate scenarios. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

22 pages, 9028 KiB  
Article
Mechanochemical Activation of Basic Oxygen Furnace Slag: Insights into Particle Modification, Hydration Behavior, and Microstructural Development
by Maochun Xu, Liuchao Guo, Junshan Wen, Xiaodong Hu, Lei Wang and Liwu Mo
Materials 2025, 18(15), 3687; https://doi.org/10.3390/ma18153687 - 6 Aug 2025
Abstract
This study proposed a mechanochemical activation strategy using ethanol-diisopropanolamine (EDIPA) to improve the grindability and hydration reactivity of basic oxygen furnace slag (BOFS), aiming for its large-scale industrial utilization. The incorporation of EDIPA significantly refined the particle size distribution and reduced the repose [...] Read more.
This study proposed a mechanochemical activation strategy using ethanol-diisopropanolamine (EDIPA) to improve the grindability and hydration reactivity of basic oxygen furnace slag (BOFS), aiming for its large-scale industrial utilization. The incorporation of EDIPA significantly refined the particle size distribution and reduced the repose angle. As a result, the compressive strength of BOFS paste increased by 25.4 MPa at 28 d with only 0.08 wt.% EDIPA. Conductivity tests demonstrated that EDIPA strongly complexes with Ca2+, Al3+, and Fe3+, facilitating the dissolution of active mineral phases, such as C12A7 and C2F, and accelerating hydration reactions. XRD and TG analyses confirmed that the incorporation of EDIPA facilitated the formation of Mc (C4(A,F)ČH11) and increased the content of C-S-H, both of which contributed to microstructural densification. Microstructural observations further revealed that EDIPA refined Ca(OH)2 crystals, increasing their specific surface area from 4.7 m2/g to 35.2 m2/g. The combined effect of crystal refinement and enhanced hydration product formation resulted in reduced porosity and improved mechanical properties. Overall, the results demonstrated that EDIPA provided an economical, effective, and scalable means of activating BOFS, thereby promoting its high-value utilization in low-carbon construction materials. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

12 pages, 1010 KiB  
Article
The Effect of cdk1 Gene Knockout on Heat Shock-Induced Polyploidization in Loach (Misgurnus anguillicaudatus)
by Hanjun Jiang, Qi Lei, Wenhao Ma, Junru Wang, Jing Gong, Xusheng Guo and Xiaojuan Cao
Life 2025, 15(8), 1223; https://doi.org/10.3390/life15081223 - 2 Aug 2025
Viewed by 185
Abstract
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) [...] Read more.
(1) Background: Polyploid fish are highly important in increasing fish production, improving fish quality, and breeding new varieties. The loach (Misgurnus anguillicaudatus), as a naturally polyploid fish, serves as an ideal biological model for investigating the mechanisms of chromosome doubling; (2) Methods: In this study, tetraploidization in diploid loach was induced by heat shock treatment, and, for the first time, the role of the key cell cycle gene cdk1 (cyclin-dependent kinase 1) in chromosome doubling was investigated; (3) Results: The experimental results show that when eggs are fertilized for 20 min and then subjected to a 4 min heat shock treatment at 39–40 °C, this represents the optimal induction condition, resulting in a tetraploid rate of 44%. Meanwhile, the results of the cdk1 knockout model (2n cdk1−/−) constructed using CRISPR/Cas9 showed that the absence of cdk1 significantly increased the chromosome doubling efficiency of the loach. The qPCR analysis revealed that knockout of cdk1 significantly upregulated cyclin genes (ccnb3,ccnc, and ccne1), while inhibiting expression of the separase gene espl1 (p < 0.05); (4) Conclusions: During chromosome doubling in diploid loaches induced by heat shock, knocking out the cdk1 gene can increase the tetraploid induction rate. This effect may occur through downregulation of the espl1 gene. This study offers novel insights into optimizing the induced breeding technology of polyploid fish and deciphering its molecular mechanism, while highlighting the potential application of integrating gene editing with physical induction. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

19 pages, 1954 KiB  
Article
Image Sensor-Based Three-Dimensional Visible Light Positioning for Various Environments
by Xiangyu Liu, Junqi Zhang, Song Song and Lei Guo
Sensors 2025, 25(15), 4741; https://doi.org/10.3390/s25154741 - 1 Aug 2025
Viewed by 184
Abstract
Research on image sensor (IS)-based visible light positioning systems has attracted widespread attention. However, when the receiver is tilted or under a single LED, the positioning system can only achieve two-dimensional (2D) positioning and requires the assistance of inertial measurement units (IMU). When [...] Read more.
Research on image sensor (IS)-based visible light positioning systems has attracted widespread attention. However, when the receiver is tilted or under a single LED, the positioning system can only achieve two-dimensional (2D) positioning and requires the assistance of inertial measurement units (IMU). When the LED is not captured or decoding fails, the system’s positioning error increases further. Thus, we propose a novel three-dimensional (3D) visible light positioning system based on image sensors for various environments. Specifically, (1) we use IMU to obtain the receiver’s state and calculate the receiver’s 2D position. Then, we fit the height–size curve to calculate the receiver’s height, avoiding the coordinate iteration error in traditional 3D positioning methods. (2) When no LED or decoding fails, we propose a firefly-assisted unscented particle filter (FA-UPF) algorithm to predict the receiver’s position, achieving high-precision dynamic positioning. The experimental results show that the system positioning error under a single LED is within 10 cm, and the average positioning error through FA-UPF under no light source is 6.45 cm. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

25 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 193
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 7094 KiB  
Article
Preliminary Study on the Geochemical Characterization of Viticis Fructus Cuticular Waxes: From Latitudinal Variation to Origin Authentication
by Yiqing Luo, Min Guo, Lei Hu, Jiaxin Yang, Junyu Xu, Muhammad Rafiq, Ying Wang, Chunsong Cheng and Shaohua Zeng
Int. J. Mol. Sci. 2025, 26(15), 7293; https://doi.org/10.3390/ijms26157293 - 28 Jul 2025
Viewed by 201
Abstract
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical [...] Read more.
Viticis Fructus (VF), a fruit known for its unique flavor profile and various health benefits, demonstrates substantial quality variations depending on its area of production. Traditional methods of production area verification based on internal compound analysis are hampered by a number of technical limitations. This investigation systematically characterized the cuticular wax composition of VF sample from a diverse variety of production areas. Quantitative analyses were conducted to evaluate the spatial distribution patterns of the wax constituents. Significant regional variations were observed: Anhui sample exhibited the highest total wax content (21.39 μg/cm2), with n-alkanes dominating at 76.67%. High-latitude regions showed elevated triterpenoid acid levels, with maslinic acid (0.53 μg/cm2) and ursolic acid (0.34 μg/cm2) concentrations exceeding those of their low-latitude counterparts by four- and three-fold, respectively. Altitudinal influence manifested in long-chain alcohol accumulation, as triacontanol reached 0.87 μg/cm2 in high-altitude sample. Five key biomarkers demonstrated direct quality correlations: eicosanoic acid, n-triacontane, dotriacontanol, β-amyrin, and α-amyrin. This study established three novel origin identification protocols: single-component quantification, multi-component wax profiling, and wax ratio analysis. This work not only reveals the latitudinal dependence of VF wax composition, but also provides a scientific framework for geographical authentication. Our findings advance wax-based quality evaluation methodologies for fruit products, offering practical solutions for production area verification challenges in food raw materials. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

21 pages, 8688 KiB  
Article
Design and Dynamic Performance Evaluation of a Novel 6W4L Wheel-Legged Robot
by Weiwei Hu, Ruiqin Li, Wenxiao Guo, Fengping Ning and Lei Zhang
Machines 2025, 13(8), 662; https://doi.org/10.3390/machines13080662 - 28 Jul 2025
Viewed by 269
Abstract
To improve the mobility of mobile robots in complex terrain environments, a novel 2-UPS&PRPU parallel mechanism is proposed, for which the parallel mechanism branched-chain decomposition and synthesis method is adopted. Based on the structural characteristics of the Hooke joint kinematic substructure, an inverse [...] Read more.
To improve the mobility of mobile robots in complex terrain environments, a novel 2-UPS&PRPU parallel mechanism is proposed, for which the parallel mechanism branched-chain decomposition and synthesis method is adopted. Based on the structural characteristics of the Hooke joint kinematic substructure, an inverse solution calculation for the mechanism is carried out, and the parameters of the simulation model are formulated to determine the workspace of the parallel mechanism. The linear velocity dexterity and minimum output carrying capacity of the parallel mechanism are analyzed, allowing the optimal parameters of the mechanism to be selected through dimension optimization, thus greatly improving the mechanism’s linear velocity dexterity and carrying capacity. The results show that the proposed parallel mechanism can satisfy the mobility requirements of mobile robots. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

17 pages, 2003 KiB  
Article
Effect of Caffeinated Chewing Gum on Maximal Strength, Muscular Power, and Muscle Recruitment During Bench Press and Back Squat Exercises
by Li Ding, Jue Liu, Yixuan Ma, Tze-Huan Lei, Mathew Barnes, Li Guo, Bin Chen, Yinhang Cao and Olivier Girard
Nutrients 2025, 17(15), 2455; https://doi.org/10.3390/nu17152455 - 28 Jul 2025
Viewed by 504
Abstract
Background/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, [...] Read more.
Background/Objectives: This study aims to investigate the effects of caffeinated chewing gum on maximal strength, muscular power, and neural drive to the prime movers during bench press and back squat in resistance-trained men. Methods: Sixteen resistance-trained males participated in a double-blind, randomized trial, chewing either caffeinated gum (4 mg/kg) or placebo gum on two separate occasions, seven days apart. After chewing for 5 min, participants performed a maximal strength test followed by muscular power assessments at 25%, 50%, 75%, and 90% of their one-repetition maximum (1RM), completing with 3, 2, 1, and 1 repetition (s), respectively, for bench press and back squat. Surface electromyography data were recorded for each repetition. Results: Caffeinated gum did not significantly improve one-repetition maximum (1RM) for bench press (p > 0.05), but increased mean frequency (MF) and median frequency (MDF) in anterior deltoid, pectoralis major, and biceps brachii (all p < 0.05) compared to placebo. For back squat, 1RM increased with caffeinated gum, along with higher MF and MDF in vastus medialis (all p < 0.05). Caffeinated gum also improved mean and peak velocities, and mean and peak power outputs at 25–75% 1RM during the bench press (all p < 0.05), along with elevated MDF in pectoralis major and biceps brachii (all p < 0.05). Similar improvements were seen in mean and peak velocities during the back squat at 25–90% 1RM (all p < 0.05), along with higher MF and MDF in vastus medialis and increased normalized root mean square activity in gluteus maximus (all p < 0.05). Conclusions: Caffeinated chewing gum (4 mg/kg) enhanced muscular power (25–75% 1RM) in the bench press and improved maximal strength and muscular power (25–90% 1RM) in the back squat by increasing muscle recruitment in resistance-trained men. Full article
(This article belongs to the Special Issue Energy Drink Effectiveness on Human Health and Exercise Performance)
Show Figures

Figure 1

15 pages, 3041 KiB  
Article
A Study on Dangerous Areas for Coal Spontaneous Combustion in Composite Goafs in Goaf-Side Entry Retaining in the Lower Layer of an Extra-Thick Coal Seam
by Ningfang Yue, Lei Wang, Jun Guo, Yin Liu, Changming Chen and Bo Gao
Fire 2025, 8(8), 298; https://doi.org/10.3390/fire8080298 - 28 Jul 2025
Viewed by 377
Abstract
Taking a composite goaf in goaf-side entry retaining as our research focus, a kilogram-level spontaneous combustion experiment was carried out, and limit parameters for coal spontaneous combustion characteristics were assessed. Combined with the key parameters of the site, a numerical model of a [...] Read more.
Taking a composite goaf in goaf-side entry retaining as our research focus, a kilogram-level spontaneous combustion experiment was carried out, and limit parameters for coal spontaneous combustion characteristics were assessed. Combined with the key parameters of the site, a numerical model of a multi-area composite goaf was constructed, and the distribution features of the dangerous area for coal spontaneous combustion in the lower layer of in goaf-side entry retaining were determined by means of the upper and lower layer composite superposition division method. The results show that at a floating coal thickness in the goaf of 1.9 m, the lower limit of oxygen concentration Cmin, upper limit of air leakage intensity, and corresponding seepage velocity are 6%, 0.282 cm−3·s−1·cm−2, and 11.28 × 10−3 m/s respectively. The dangerous area regarding residual coal on the intake side is 23~38 m away from the working face, while that on the return air side is concentrated amid the goaf at 23~75 m, and that on the flexible formwork wall is concentrated at 0~121 m. The research results are of crucial practical importance for the prevention and control of coal spontaneous combustion within a composite goaf. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires (2nd Edition))
Show Figures

Figure 1

19 pages, 3715 KiB  
Article
Quantum Chemical Investigation on the Material Properties of Al-Based Hydrides XAl2H2 (X = Ca, Sr, Sc, and Y) for Hydrogen Storage Applications
by Yong Guo, Rui Guo, Lei Wan and Youyu Zhang
Materials 2025, 18(15), 3521; https://doi.org/10.3390/ma18153521 - 27 Jul 2025
Viewed by 319
Abstract
Aluminum–hydrogen compounds have drawn considerable interest for applications in solid-state hydrogen storage. The structural, hydrogen storage, electronic, mechanical, phonon, and thermodynamic properties of XAl2H2 (X = Ca, Sr, Sc, Y) hydrides are investigated using density functional theory. These hydrides exhibit [...] Read more.
Aluminum–hydrogen compounds have drawn considerable interest for applications in solid-state hydrogen storage. The structural, hydrogen storage, electronic, mechanical, phonon, and thermodynamic properties of XAl2H2 (X = Ca, Sr, Sc, Y) hydrides are investigated using density functional theory. These hydrides exhibit negative formation energies in the hexagonal phase, indicating their thermodynamic stability. The gravimetric hydrogen storage capacities of CaAl2H2, SrAl2H2, ScAl2H2, and YAl2H2 are calculated to be 1.41 wt%, 0.94 wt%, 1.34 wt%, and 0.93 wt%, respectively. Analysis of the electronic density of states reveals metallic characteristics. Furthermore, the calculated elastic constants satisfy the Born stability criteria, confirming their mechanical stability. Additionally, through phonon spectra analysis, dynamical stability is verified for CaAl2H2 and SrAl2H2 but not for ScAl2H2 and YAl2H2. Finally, we present temperature-dependent thermodynamic properties. This research reveals that XAl2H2 (X = Ca, Sr, Sc, Y) materials represent promising candidates for solid-state hydrogen storage, providing a theoretical foundation for further studies on XAl2H2 systems. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

17 pages, 6752 KiB  
Article
Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers
by Zi-Xian Li, Chen Yang, Lei Guo, Jun Ling and Jun-Ting Xu
Molecules 2025, 30(15), 3108; https://doi.org/10.3390/molecules30153108 - 24 Jul 2025
Viewed by 333
Abstract
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs [...] Read more.
Poly(ε-caprolactone)-b-polysarcosine (PCL-b-PSar) block copolymers (BCPs) emerge as a promising alternative to conventional poly(ε-caprolactone)-b-poly(ethylene oxide) BCPs for biomedical applications, leveraging superior biocompatibility and biodegradability. In this study, we synthesized two series of PCL-b-PSar BCPs with controlled polymerization degrees (DP of PCL: 45/67; DP of PSar: 28–99) and low polydispersity indexes (Đ ≤ 1.1) and systematically investigated their crystallization-driven self-assembly (CDSA) in alcohol solvents (ethanol, n-butanol, and n-hexanol). It was found that the limited solubility of PSar in alcohols resulted in competition between micellization and crystallization during self-assembly of PCL-b-PSar, and thus coexistence of lamellae and spherical micelles. To overcome this morphological heterogeneity, we developed a modified self-seeding method by employing a two-step crystallization strategy (i.e., Tc1 = 33 °C and Tc2 = 8 °C), achieving conversion of micelles into crystals and yielding uniform self-assembled structures. PCL-b-PSar BCPs with short PSar blocks tended to form well-defined two-dimensional lamellar crystals, while those with long PSar blocks induced formation of hierarchical structures in the PCL45 series and polymer aggregation on crystal surfaces in the PCL67 series. Solvent quality notably influenced the self-assembly pathways of PCL45-b-PSar28. Lamellar crystals were formed in ethanol and n-butanol, but micrometer-scale dendritic aggregates were generated in n-hexanol, primarily due to a significant Hansen solubility parameter mismatch. This study elucidated the CDSA mechanism of PCL-b-PSar in alcohols, enabling precise structural control for biomedical applications. Full article
Show Figures

Graphical abstract

13 pages, 5204 KiB  
Article
Spontaneous Formation of a Zincphilic Ag Interphase for Dendrite-Free and Corrosion-Resistant Zinc Metal Anodes
by Neng Yu, Qingpu Zeng, Yiming Fu, Hanbin Li, Jiating Li, Rui Wang, Longlong Meng, Hao Wu, Zhuyao Li, Kai Guo and Lei Wang
Batteries 2025, 11(8), 284; https://doi.org/10.3390/batteries11080284 - 24 Jul 2025
Viewed by 340
Abstract
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy [...] Read more.
The remarkable advantages of zinc anodes render aqueous zinc-ion batteries (ZIBs) a highly promising energy storage solution. Nevertheless, the uncontrolled growth of zinc dendrites and side reactions pose significant obstacles to the practical application of ZIBs. To address these issues, a straightforward strategy has been proposed, involving the addition of a minute quantity of AgNO3 to the electrolyte to stabilize zinc anodes. This additive spontaneously forms a hierarchically porous Ag interphase on the zinc anodes, which is characterized by its zinc-affinitive nature. The interphase offers abundant zinc nucleation sites and accommodation space, leading to uniform zinc plating/stripping and enhanced kinetics of zinc deposition/dissolution. Moreover, the chemically inert Ag interphase effectively curtails side reactions by isolating water molecules. Consequently, the incorporation of AgNO3 enables zinc anodes to undergo cycling for extended periods, such as over 4000 h at a current density of 0.5 mA/cm2 with a capacity of 0.5 mAh/cm2, and for 450 h at 2 mA/cm2 with a capacity of 2 mAh/cm2. Full zinc-ion cells equipped with this additive not only demonstrate increased specific capacities but also exhibit significantly improved cycle stability. This research presents a cost-effective and practical approach for the development of reliable zinc anodes for ZIBs. Full article
(This article belongs to the Special Issue Flexible and Wearable Energy Storage Devices)
Show Figures

Graphical abstract

Back to TopTop