Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of PCL-b-PSar
2.2. CDSA of PCL-b-PSar in Ethanol
2.3. Effect of Solvent Quality on CDSA of PCL-b-PSar
3. Materials and Methods
3.1. Materials
3.2. Characterization Methods
3.3. Synthesis of PCL Macroinitiators
3.4. Synthesis of Sar-NCA Monomer
3.5. Synthesis of PCL-b-PSar Block Copolymers and PSar Homopolymers
3.6. Preparation Procedure of PCL-b-PSar Crystalline Micelles
3.7. Density Determination of PSar Homopolymer
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, P.J.; Lin, Y.C.; Chen, W.C. Review of bioderived and biodegradable polymers/block-copolymers and their biomedical and electronic applications. Polym. J. 2025, 57, 233–247. [Google Scholar] [CrossRef]
- Mai, Y.Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef] [PubMed]
- Holder, S.J.; Sommerdijk, N.A.J.M. New micellar morphologies from amphiphilic block copolymers: Disks, toroids and bicontinuous micelles. Polym. Chem. 2011, 2, 1018–1028. [Google Scholar] [CrossRef]
- Lu, Y.Q.; Lin, J.P.; Wang, L.Q.; Zhang, L.S.; Cai, C.H. Self-assembly of copolymer micelles: Higher-level assembly for constructing hierarchical structure. Chem. Rev. 2020, 120, 4111–4140. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, L.; Zhao, C.Q.; Cai, J.D.; Qiu, H.B.; Manners, I. Emerging applications for living crystallization-driven self-assembly. Chem. Sci. 2021, 12, 4661–4682. [Google Scholar] [CrossRef] [PubMed]
- Ganda, S.; Stenzel, M.H. Concepts, fabrication methods and applications of living crystallization-driven self-assembly of block copolymers. Prog. Polym. Sci. 2020, 101, 101195. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Xu, J.T. One-dimensional growth kinetics for formation of cylindrical crystalline micelles of block copolymers. Polym. Cryst. 2019, 2, 10047. [Google Scholar] [CrossRef]
- Yang, C.; Li, Z.X.; Xu, J.T. Single crystals and two-dimensional crystalline assemblies of block copolymers. J. Polym. Sci. 2022, 60, 2153–2174. [Google Scholar] [CrossRef]
- He, W.N.; Xu, J.T. Crystallization assisted self-assembly of semicrystalline block copolymers. Prog. Polym. Sci. 2012, 37, 1350–1400. [Google Scholar] [CrossRef]
- Massey, J.; Power, K.N.; Manners, I.; Winnik, M.A. Self-assembly of a novel organometallic−inorganic block copolymer in solution and the solid State: Nonintrusive observation of novel wormlike poly(ferrocenyldimethylsilane)-b-poly(dimethylsiloxane) micelles. J. Am. Chem. Soc. 1998, 120, 9533–9540. [Google Scholar] [CrossRef]
- Wang, X.S.; Guerin, G.; Wang, H.; Wang, Y.S.; Manners, I.; Winnik, M.A. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 2007, 317, 644–647. [Google Scholar] [CrossRef]
- Gilroy, J.B.; Gädt, T.; Whittell, G.R.; Chabanne, L.; Mitchels, J.M.; Richardson, R.M.; Winnik, M.A.; Manners, I. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2010, 2, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.J.; Nikbin, E.; Plaha, T.S.; Howe, J.Y.; Winnik, M.A. Crystallization-driven self-assembly of polyferrocenyldimethylsilane block copolymers with the corona modified with pendant amino groups. Macromolecules 2024, 57, 3109–3120. [Google Scholar] [CrossRef]
- Song, S.F.; Zhou, H.; Ye, S.Y.; Tam, J.; Howe, J.Y.; Manners, I.; Winnik, M.A. Spherulite-like micelles. Angew. Chem. Int. Ed. 2021, 60, 10950–10956. [Google Scholar] [CrossRef]
- Xu, J.T.; Fairclough, J.P.A.; Mai, S.M.; Ryan, A.J. The effect of architecture on the morphology and crystallization of oxyethylene/oxybutylene block copolymers from micelles in n-hexane. J. Mater. Chem. 2003, 13, 2740–2748. [Google Scholar] [CrossRef]
- Mihut, A.M.; Drechsler, M.; Möller, M.; Ballauff, M. Sphere-to-rod transition of micelles formed by the semicrystalline polybutadiene-block-poly(ethylene oxide) block copolymer in a selective solvent. Macromol. Rapid Commun. 2010, 31, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Van Horn, R.M.; Zheng, J.X.; Sun, H.J.; Hsiao, M.S.; Zhang, W.B.; Dong, X.H.; Xu, J.T.; Thomas, E.L.; Lotz, B.; Cheng, S.Z.D. Solution crystallization behavior of crystalline−crystalline diblock copolymers of poly(ethylene oxide)-block-poly(ε-caprolactone). Macromolecules 2010, 43, 6113–6119. [Google Scholar] [CrossRef]
- Schmelz, J.; Schedl, A.E.; Steinlein, C.; Manners, I.; Schmalz, H. Length control and block-type architectures in worm-like micelles with polyethylene cores. J. Am. Chem. Soc. 2012, 134, 14217–14225. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.G.; Lodge, T.P.; Hillmyer, M.A. A stepwise “micellization–crystallization” route to oblate ellipsoidal, cylindrical, and bilayer micelles with polyethylene cores in water. Macromolecules 2012, 45, 9460–9467. [Google Scholar] [CrossRef]
- Fan, B.; Wang, R.Y.; Wang, X.Y.; Xu, J.T.; Du, B.Y.; Fan, Z.Q. Crystallization-driven co-assembly of micrometric polymer hybrid single crystals and nanometric crystalline micelles. Macromolecules 2017, 50, 2006–2015. [Google Scholar] [CrossRef]
- Fan, B.; Liu, L.; Li, J.H.; Ke, X.X.; Xu, J.T.; Du, B.Y.; Fan, Z.Q. Crystallization-driven one-dimensional self-assembly of polyethylene-b-poly(tert-butylacrylate) diblock copolymers in DMF: Effects of crystallization temperature and the corona-forming block. Soft Matter 2016, 12, 67–76. [Google Scholar] [CrossRef]
- Inam, M.; Jones, J.R.; Pérez-Madrigal, M.M.; Arno, M.C.; Dove, A.P.; O’Reilly, R.K. Controlling the size of two-dimensional polymer platelets for water-in-water emulsifiers. ACS Cent. Sci. 2018, 4, 63–70. [Google Scholar] [CrossRef]
- Inam, M.; Cambridge, G.; Pitto-Barry, A.; Laker, Z.P.L.; Wilson, N.R.; Mathers, R.T.; Dove, A.P.; O’Reilly, R.K. 1D vs. 2D shape selectivity in the crystallization-driven self-assembly of polylactide block copolymers. Chem. Sci. 2017, 8, 4223–4230. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.F.; Wu, L.B.; Yu, W.; Wilks, T.R.; Dove, A.P.; Ding, H.M.; O’Reilly, R.K.; Chen, G.S.; Jiang, M. Glyco-platelets with controlled morphologies via crystallization-driven self-assembly and their shape-dependent interplay with macrophages. ACS Macro Lett. 2019, 8, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Y.; Guo, X.S.; Zhang, Z.K.; Xu, J.T.; Fan, Z.Q. Solution-grown composite single crystals of poly(L-lactic acid)-b-polystyrene block copolymers and poly(L-lactic acid) homopolymers. Polymer 2020, 208, 122979. [Google Scholar] [CrossRef]
- Liu, L.P.; Meng, X.C.; Li, M.L.; Chu, Z.Y.; Tong, Z.Z. Regulation of two-dimensional platelet micelles with tunable core composition distribution via coassembly seeded growth approach. ACS Macro Lett. 2024, 13, 542–549. [Google Scholar] [CrossRef]
- Wang, J.; Lu, Y.; Chen, Y.M. Fabrication of 2D surface-functional polymer platelets via crystallization-driven self-assembly of poly(ε-caprolactone)-contained block copolymers. Polymer 2019, 160, 196–203. [Google Scholar] [CrossRef]
- Su, Y.W.; Jiang, Y.K.; Liu, L.P.; Xie, Y.J.; Chen, S.C.; Wang, Y.J.; O’Reilly, R.K.; Tong, Z.Z. Hydrogen-bond-regulated platelet micelles by crystallization-driven self-assembly and templated growth for poly(ε-caprolactone) block copolymers. Macromolecules 2022, 55, 1067–1076. [Google Scholar] [CrossRef]
- Xie, Y.J.; Tong, Z.Z.; Xia, T.L.; Worch, J.C.; Rho, J.Y.; Dove, A.P.; O’Reilly, R.K. 2D hierarchical microbarcodes with expanded storage capacity for optical multiplex and information encryption. Adv. Mater. 2024, 36, 2308154. [Google Scholar] [CrossRef]
- Zhuo, W.Q.; Li, Y.M.; Zhang, R.K.; Huang, R.S.; Zhou, J.; Tong, Z.Z.; Jiang, G.H. Single crystals of crystalline block copolymers formed in n-hexanol and methanol/DMF solutions: A comparative study. J. Appl. Polym. Sci. 2017, 134, 45089. [Google Scholar] [CrossRef]
- Du, Z.X.; Xu, J.T.; Fan, Z.Q. Micellar morphologies of poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymers in water with a crystalline core. Macromolecules 2007, 40, 7633–7637. [Google Scholar] [CrossRef]
- He, W.N.; Zhou, B.; Xu, J.T.; Du, B.Y.; Fan, Z.Q. Two growth modes of semicrystalline cylindrical poly(ε-caprolactone)-b-poly(ethylene oxide) micelles. Macromolecules 2012, 45, 9768–9778. [Google Scholar] [CrossRef]
- Lee, C.U.; Smart, T.P.; Guo, L.; Epps, T.H.; Zhang, D.H. Synthesis and characterization of amphiphilic cyclic diblock copolypeptoids from N-heterocyclic carbene-mediated zwitterionic polymerization of N-substituted N-carboxyanhydride. Macromolecules 2011, 44, 9574–9585. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Lin, M.; Bonduelle, C.; Li, R.Y.; Shi, Z.K.; Zhu, C.H.; Lecommandoux, S.; Li, Z.B.; Sun, J. Thermoinduced crystallization-driven self-assembly of bioinspired block copolymers in aqueous solution. Biomacromolecules 2020, 21, 3411–3419. [Google Scholar] [CrossRef]
- Kang, L.Y.; Chao, A.; Zhang, M.; Yu, T.Y.; Wang, J.; Wang, Q.; Yu, H.H.; Jiang, N.S.; Zhang, D.H. Modulating the molecular geometry and solution self-assembly of amphiphilic polypeptoid block copolymers by side chain branching pattern. J. Am. Chem. Soc. 2021, 143, 5890–5902. [Google Scholar] [CrossRef]
- Shi, B.Y.; Shen, D.; Li, W.; Wang, G.W. Self-assembly of copolymers containing crystallizable blocks: Strategies and applications. Macromol. Rapid Commun. 2022, 43, 2200071. [Google Scholar] [CrossRef]
- Cortes, M.D.L.A.; de la Campa, R.; Valenzuela, M.L.; Díaz, C.; Carriedo, G.A.; Presa Soto, A. Cylindrical micelles by the self-assembly of crystalline-b-coil polyphosphazene-b-P2VP block copolymers. Stabilization of gold nanoparticles. Molecules 2019, 24, 1772. [Google Scholar] [CrossRef]
- Folgado, E.; Mayor, M.; Ladmiral, V.; Semsarilar, M. Evaluation of self-assembly pathways to control crystallization-driven self-assembly of a semicrystalline P(VDF-co-HFP)-b-PEG-b-P(VDF-co-HFP) triblock copolymer. Molecules 2020, 25, 4033. [Google Scholar] [CrossRef]
- Qian, J.S.; Li, X.Y.; Lunn, D.J.; Gwyther, J.; Hudson, Z.M.; Kynaston, E.; Rupar, P.A.; Winnik, M.A.; Manners, I. Uniform, high aspect ratio fiber-like micelles and block co-micelles with a crystalline π-conjugated polythiophene core by self-seeding. J. Am. Chem. Soc. 2014, 136, 4121–4124. [Google Scholar] [CrossRef]
- Tao, D.L.; Feng, C.; Lu, Y.J.; Cui, Y.N.; Yang, X.; Manners, I.; Winnik, M.A.; Huang, X.Y. Self-seeding of block copolymers with a π-conjugated oligo(p-phenylenevinylene) segment: A versatile route toward monodisperse fiber-like nanostructures. Macromolecules 2018, 51, 2065–2075. [Google Scholar] [CrossRef]
- Taghizadeh, F.; Heidari, M.; Mostafavi, S.; Mortazavi, S.M.; Haeri, A. A review of preparation methods and biomedical applications of poly(ε-caprolactone)-based novel formulations. J. Mater. Sci. 2024, 59, 10587–10622. [Google Scholar] [CrossRef]
- Ibrahim, M.; Ramadan, E.; Elsadek, N.E.; Emam, S.E.; Shimizu, T.; Ando, H.; Ishima, Y.; Elgarhy, O.H.; Sarhan, H.A.; Hussein, A.K.; et al. Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products. J. Control. Release 2022, 351, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Jiang, S.D.; Hou, Y.; Yan, S.K.; Zhang, G.Z.; Gan, Z.H. Influence of chemical structure on enzymatic degradation of single crystals of PCL-b-PEO amphiphilic block copolymer. Polymer 2010, 51, 2426–2434. [Google Scholar] [CrossRef]
- Zhu, W.; Peng, B.; Wang, J.; Zhang, K.; Liu, L.X.; Chen, Y.M. Bamboo leaf-like micro-nano sheets self-assembled by block copolymers as wafers for cells. Macromol. Biosci. 2014, 14, 1764–1770. [Google Scholar] [CrossRef]
- He, W.N.; Xu, J.T.; Du, B.Y.; Fan, Z.Q.; Sun, F.L. Effect of pH on the micellar morphology of semicrystalline PCL-b-PEO block copolymers in aqueous solution. Macromol. Chem. Phys. 2012, 213, 952–964. [Google Scholar] [CrossRef]
- He, W.N.; Xu, J.T.; Du, B.Y.; Fan, Z.Q.; Wang, X.S. Inorganic-salt-induced morphological transformation of semicrystalline micelles of PCL-b-PEO block copolymer in aqueous solution. Macromol. Chem. Phys. 2010, 211, 1909–1916. [Google Scholar] [CrossRef]
- Rizis, G.; van de Ven, T.G.M.; Eisenberg, A. “Raft” formation by two-dimensional self-assembly of block copolymer rod micelles in aqueous solution. Angew. Chem. Int. Ed. 2014, 53, 9000–9003. [Google Scholar] [CrossRef]
- Yang, C.; Li, Z.X.; Xu, J.T. Hybrid single crystals of poly(ε-caprolactone) homopolymers and poly(ε-caprolactone)-b-poly(ethylene oxide) block copolymers. Macromol. Chem. Phys. 2024, 225, 2400086. [Google Scholar] [CrossRef]
- d’Avanzo, N.; Celia, C.; Barone, A.; Carafa, M.; Di Marzio, L.; Santos, H.A.; Fresta, M. Immunogenicity of polyethylene glycol based nanomedicines: Mechanisms, clinical implications and systematic approach. Adv. Ther. 2020, 3, 1900170. [Google Scholar] [CrossRef]
- Elsadek, N.E.; Abu Lila, A.S.; Ishida, T. 5—Immunological responses to PEGylated proteins: Anti-PEG antibodies. In Polymer-Protein Conjugates; Pasut, G., Zalipsky, S., Eds.; Elsevier, Inc.: Amsterdam, The Netherlands, 2020; pp. 103–123. [Google Scholar]
- Turecek, P.L.; Siekmann, J. 4—PEG–protein conjugates: Nonclinical and clinical toxicity considerations. In Polymer-Protein Conjugates; Pasut, G., Zalipsky, S., Eds.; Elsevier, Inc.: Amsterdam, The Netherlands, 2020; pp. 61–101. [Google Scholar]
- Tang, Y.C.; Deber, C.M. Hydrophobicity and helicity of membrane-interactive peptides containing peptoid residues. Biopolymers 2002, 65, 254–262. [Google Scholar] [CrossRef]
- Ostuni, E.; Chapman, R.G.; Holmlin, R.E.; Takayama, S.; Whitesides, G.M. A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir 2001, 17, 5605–5620. [Google Scholar] [CrossRef]
- Birke, A.; Ling, J.; Barz, M. Polysarcosine-containing copolymers: Synthesis, characterization, self-assembly, and applications. Prog. Polym. Sci. 2018, 81, 163–208. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Y.; Yan, F.J.; Chen, J.; Tao, X.F.; Ling, J.; Yang, B.; He, Q.J.; Mao, Z.W. Polysarcosine brush stabilized gold nanorods for in vivo near-infrared photothermal tumor therapy. Acta Biomater. 2017, 50, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.X.; Taguchi, K.; Matsumoto, K.; Kobatake, E.; Ito, Y.; Ueda, M. Polysarcosine-coated liposomes attenuating immune response induction and prolonging blood circulation. J. Colloid. Interf. Sci. 2023, 651, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.K.; Sun, C.R.; Xiong, F.; Zhang, W.N.; Yao, W.J.; Xu, Y.H.; Fan, W.P.; Huo, F.W. Polysarcosine as PEG alternative for enhanced camptothecin-induced cancer immunogenic cell death. ACS Appl. Mater. Interfaces 2024, 16, 19472–19479. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.L.; Hou, Y.Q.; Wang, H.; Lu, H. Polysarcosine as an alternative to PEG for therapeutic protein conjugation. Bioconjugate Chem. 2018, 29, 2232–2238. [Google Scholar] [CrossRef]
- Cui, S.D.; Wang, X.; Li, Z.J.; Zhang, Q.G.; Wu, W.Z.; Liu, J.J.; Wu, H.; Chen, C.; Guo, K. One-pot glovebox-free synthesis, characterization, and self-assembly of novel amphiphilic poly(sarcosine-b-caprolactone) diblock copolymers. Macromol. Rapid. Commun. 2014, 35, 1954–1959. [Google Scholar] [CrossRef]
- Cui, S.D.; Pan, X.F.; Gebru, H.; Wang, X.; Liu, J.Q.; Liu, J.J.; Li, Z.J.; Guo, K. Amphiphilic star-shaped poly(sarcosine)-block-poly(ε-caprolactone) diblock copolymers: One-pot synthesis, characterization, and solution properties. J. Mater. Chem. B 2017, 5, 679–690. [Google Scholar] [CrossRef]
- Deng, Y.W.; Zou, T.; Tao, X.F.; Semetey, V.; Trepout, S.; Marco, S.; Ling, J.; Li, M.H. Poly(ε-caprolactone)-block-polysarcosine by ring-opening polymerization of sarcosine N-thiocarboxyanhydride: Synthesis and thermoresponsive self-assembly. Biomacromolecules 2015, 16, 3265–3274. [Google Scholar] [CrossRef]
- Lv, R.K.; Qian, Z.Z.; Zhao, X.P.; Xiong, F.; Xu, Y.J.; Fan, W.P.; Yao, X.K.; Huang, W. Self-assembly of polysarcosine amphiphilic polymers-tethered gold nanoparticles for precise photo-controlled synergistic therapy. Nano Res. 2023, 16, 5685–5694. [Google Scholar] [CrossRef]
- Morrell, A.H.; Warren, N.J.; Thornton, P.D. The production of polysarcosine-containing nanoparticles by ring-opening polymerization-induced self-assembly. Macromol. Rapid. Commun. 2024, 45, 2400103. [Google Scholar] [CrossRef] [PubMed]
- Makiguchi, K.; Satoh, T.; Kakuchi, T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules 2011, 44, 1999–2005. [Google Scholar] [CrossRef]
- Kricheldorf, H.R. Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew. Chem. Int. Ed. 2006, 45, 5752–5784. [Google Scholar] [CrossRef] [PubMed]
- Tao, X.F.; Zheng, B.T.; Bai, T.W.; Zhu, B.K.; Ling, J. Hydroxyl group tolerated polymerization of N-substituted glycine N-thiocarboxyanhydride mediated by aminoalcohols: A simple way to α-hydroxyl-ω-aminotelechelic polypeptoids. Macromolecules 2017, 50, 3066–3077. [Google Scholar] [CrossRef]
- Schlick, T.L.; Ding, Z.B.; Kovacs, E.W.; Francis, M.B. Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 2005, 127, 3718–3723. [Google Scholar] [CrossRef]
- Novoa-Carballal, R.; Müller, A.H.E. Synthesis of polysaccharide-b-PEG block copolymers by oxime click. Chem. Commun. 2012, 48, 3781–3783. [Google Scholar] [CrossRef]
- Tian, Z.Y.; Zhang, Z.C.; Wang, S.; Lu, H. A moisture-tolerant route to unprotected α/β-amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides. Nat. Commun. 2021, 12, 5810. [Google Scholar] [CrossRef]
- Wang, S.; Lu, M.Y.; Wan, S.K.; Lyu, C.Y.; Tian, Z.Y.; Liu, K.; Lu, H. Precision synthesis of polysarcosine via controlled ring-opening polymerization of N-carboxyanhydride: Fast kinetics, ultrahigh molecular weight, and mechanistic insights. J. Am. Chem. Soc. 2024, 146, 5678–5692. [Google Scholar] [CrossRef]
- Blundell, D.J.; Keller, A.; Kovacs, A.J. A new self-nucleation phenomenon and its application to growing of polymer crystals from solution. J. Polym. Sci. Part B Polym. Lett. 1966, 4, 481–486. [Google Scholar] [CrossRef]
- Núñez, E.; Gedde, U.W. Single crystal morphology of star-branched polyesters with crystallisable poly(ε-caprolactone) arms. Polymer 2005, 46, 5992–6000. [Google Scholar] [CrossRef]
- Barton, A.F.M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Bordes, C.; Fréville, V.; Ruffin, E.; Marote, P.; Gauvrit, J.Y.; Briançon, S.; Lantéri, P. Determination of poly(ε-caprolactone) solubility parameters: Application to solvent substitution in a microencapsulation process. Int. J. Pharm. 2010, 383, 236–243. [Google Scholar] [CrossRef]
- van Krevelen, D.W.; te Nijenhuis, K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Meusburger, K.E. Determination of cohesive energy density parameters for developing pesticide formulations. In Pesticide Formulations: Innovations and Developments; Cross, B., Scher, H.B., Eds.; ACS Symposium Series 371; American Chemical Society: Washington, DC, USA, 1988; Chapter 14; pp. 151–162. [Google Scholar]
- Hansen, C.M. (Ed.) Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
Composition a | Mn,NMR b (kg/mol) | Đ c | Weight Ratio of PCL/PSar d |
---|---|---|---|
PCL45 | 5.2 | 1.04 | - |
PCL67 | 7.8 | 1.05 | - |
PCL45-b-PSar28 | 7.2 | 1.06 | 72/28 |
PCL45-b-PSar43 | 8.3 | 1.06 | 63/37 |
PCL45-b-PSar81 | 11.0 | 1.06 | 47/52 |
PCL67-b-PSar34 | 10.2 | 1.07 | 76/24 |
PCL67-b-PSar69 | 12.7 | 1.06 | 61/39 |
PCL67-b-PSar99 | 14.8 | 1.10 | 52/48 |
Category | Material | δd/MPa1/2 | δp/MPa1/2 | δh/MPa1/2 | δt a/MPa1/2 | Ra,PCL b/MPa1/2 | Ra,PSar b/MPa1/2 |
---|---|---|---|---|---|---|---|
Solvents | Ethanol c | 15.8 | 8.8 | 19.4 | 26.5 | 12.5 | 16.4 |
n-Butanol c | 16.0 | 5.7 | 15.8 | 23.2 | 8.7 | 17.1 | |
n-Hexanol c | 15.8 | 4.3 | 13.5 | 21.2 | 7.1 | 17.8 | |
Polymers | PCL d | 17.7 | 6.2 | 7.8 | 20.3 | - | - |
PSar e | 17.1 | 21.3 | 9.1 | 28.8 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-X.; Yang, C.; Guo, L.; Ling, J.; Xu, J.-T. Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers. Molecules 2025, 30, 3108. https://doi.org/10.3390/molecules30153108
Li Z-X, Yang C, Guo L, Ling J, Xu J-T. Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers. Molecules. 2025; 30(15):3108. https://doi.org/10.3390/molecules30153108
Chicago/Turabian StyleLi, Zi-Xian, Chen Yang, Lei Guo, Jun Ling, and Jun-Ting Xu. 2025. "Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers" Molecules 30, no. 15: 3108. https://doi.org/10.3390/molecules30153108
APA StyleLi, Z.-X., Yang, C., Guo, L., Ling, J., & Xu, J.-T. (2025). Controlled Synthesis and Crystallization-Driven Self-Assembly of Poly(ε-caprolactone)-b-polysarcosine Block Copolymers. Molecules, 30(15), 3108. https://doi.org/10.3390/molecules30153108