Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (79)

Search Parameters:
Authors = José S. Câmara ORCID = 0000-0003-1965-3151

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1650 KiB  
Article
Unlocking the Fatty Acid and Antioxidant Profile of Grape Pomace: A Systematic Assessment Across Varieties and Vintages for Its Sustainable Valorization
by Teresa Abreu, Rui Ferreira, Paula C. Castilho, José S. Câmara, Juan Teixeira and Rosa Perestrelo
Molecules 2025, 30(15), 3150; https://doi.org/10.3390/molecules30153150 - 28 Jul 2025
Viewed by 289
Abstract
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content [...] Read more.
Grape pomace (GP), the main by-product of the wine industry, represents a valuable source of bioactive metabolites with significant potential for valorization in the context of sustainable bioresource management. This study systematically characterizes the fatty acid methyl ester (FAME) profile, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activities (DPPH, ABTS, ORAC) of GP derived from seven grape varieties across three consecutive vintages (2022–2024). White GP, particularly Verdelho and Sercial, exhibited a superior lipid quality with high concentrations of methyl linoleate (up to 1997 mg/100 g DW) and methyl oleate (up to 1294 mg/100 g DW), low atherogenic (AI < 0.05) and thrombogenic indices (TI ≤ 0.13), and elevated PUFA/SFA ratios (≥8.2). In contrast, red GP, especially from Complexa and Tinta Negra, demonstrated the highest antioxidant potential, with TPC values up to 6687 mgGAE/100 g DW, TFC up to 4624 mgQE/100 g DW, and antioxidant activities reaching 5399 mgTE/100 g (DPPH) and 7219 mgTE/100 g (ABTS). Multivariate statistical analyses (PCA, PLS-DA, HCA) revealed distinct varietal and vintage-dependent clustering and identified key discriminant fatty acids, including linolenic acid (C18:3), lauric acid (C12:0), and arachidic acid (C20:0). These findings underscore the compositional diversity and functional potential of GP, reinforcing its suitability for applications in functional foods, nutraceuticals, and cosmetics, in alignment with circular economy principles. Full article
Show Figures

Figure 1

14 pages, 1840 KiB  
Article
Volatilomic Fingerprint of Tomatoes by HS-SPME/GC-MS as a Suitable Analytical Platform for Authenticity Assessment Purposes
by Gonçalo Jasmins, Tânia Azevedo, José S. Câmara and Rosa Perestrelo
Separations 2025, 12(8), 188; https://doi.org/10.3390/separations12080188 - 22 Jul 2025
Viewed by 202
Abstract
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum [...] Read more.
Tomatoes are globally esteemed not only for their nutritional value but also for their complex and appealing aroma, a key determinant of consumer preference. The present study aimed to comprehensively characterise the volatilomic fingerprints of three tomato species—Solanum lycopersicum L., S. lycopersicum var. cerasiforme, and S. betaceum—encompassing six distinct varieties, through the application of headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS). A total of 55 volatile organic compounds (VOCs) spanning multiple chemical classes were identified, of which only 28 were ubiquitously present across all varieties examined. Carbonyl compounds constituted the predominant chemical family, with hexanal and (E)-2-hexenal emerging as putative key contributors to the characteristic green and fresh olfactory notes. Notably, esters were found to dominate the unique volatile fingerprint of cherry tomatoes, particularly methyl 2-hydroxybenzoate, while Kumato and Roma varieties exhibited elevated levels of furanic compounds. Multivariate statistical analyses, including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), demonstrated clear varietal discrimination and identified potential aroma-associated biomarkers such as phenylethyl alcohol, 3-methyl-1-butanol, hexanal, (E)-2-octenal, (E)-2-nonenal, and heptanal. Collectively, these findings underscore the utility of volatilomic fingerprint as a robust tool for varietal identification and quality control within the food industry. Full article
Show Figures

Graphical abstract

16 pages, 2353 KiB  
Article
New Contributions to Deepen the Quality-Based Safety Assessment in the Consumption of Edible Nasturtium Flowers—The Role of Volatilome
by Rosa Perestrelo, Maria da Graça Lopes, Alda Pereira da Silva, Maria do Céu Costa and José S. Câmara
Life 2025, 15(7), 1053; https://doi.org/10.3390/life15071053 - 30 Jun 2025
Viewed by 636
Abstract
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high [...] Read more.
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high acceptability and dietary safety, we conducted a comprehensive volatilomic and phytochemical analysis of T. majus flowers and their juice. Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was employed to establish the volatilomic fingerprint of floral tissues and juice. Our analysis revealed a striking dominance of benzyl isothiocyanate and benzonitrile, which together accounted for 88% of the total volatile organic metabolites (VOMs) in the juice, 67% and 21%, respectively. In the floral tissues, benzyl isothiocyanate was even more prevalent, representing 95% of the total volatile profile. Complementary in vitro assays confirmed a substantial total phenolic content and strong antioxidant activity in the flowers. These findings provide a robust chemical rationale for the potential health-promoting attributes of T. majus, while identifying key volatilomic markers that could support future functional and safety claims. In parallel, a benefit–risk assessment framework is discussed in accordance with the European Food Safety Authority (EFSA) guidelines for the Qualified Presumption of Safety (QPS) of edible flowers. Given that both benzyl isothiocyanate and benzonitrile are classified as Cramer Class III substances, a conservative intake threshold of 1.5 μg/kg body weight per day is proposed. To enable quantitative exposure modeling and support the derivation of a tolerable daily intake (TDI), future studies should integrate organic solvent-based extraction methodologies to estimate the total volatile load per gram of floral biomass. This would align risk–benefit assessments with the EFSA’s evolving framework for novel foods and functional ingredients. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

12 pages, 2374 KiB  
Article
Unveiling the Regional Identity of Madeira Wine: Insights from Saccharomyces cerevisiae Strains Using Interdelta Analysis
by Mariangie M. Castillo, Nikol Parra, José S. Câmara and Mahnaz Khadem
Beverages 2025, 11(3), 84; https://doi.org/10.3390/beverages11030084 - 6 Jun 2025
Cited by 1 | Viewed by 689
Abstract
The Demarcated Region of Madeira (DRM) is one of the oldest wine regions in Portugal, where the famous Madeira Wine (MW) is produced by spontaneous fermentation using endogenous yeasts. Several studies reported the role of endogenous Saccharomyces cerevisiae strains in the regional identity [...] Read more.
The Demarcated Region of Madeira (DRM) is one of the oldest wine regions in Portugal, where the famous Madeira Wine (MW) is produced by spontaneous fermentation using endogenous yeasts. Several studies reported the role of endogenous Saccharomyces cerevisiae strains in the regional identity of wines, but only a few studies have been published in the DRM. The PCR-Interdelta (Polymerase Chain Reaction-Interdelta) analysis is a reliable method for S. cerevisiae strain identification. Here, we report the S. cerevisiae strains isolated from six Vitis vinifera grape varieties, namely, Tinta Negra, Boal, Sercial, Verdelho, Malvasia de São Jorge, and Complexa, which are widely used in MW production. During the 2020 campaign, eleven samples were collected from licensed vineyards and a winery, and submitted to spontaneous microfermentations and yeast isolation. Of the 1452 isolates counted, 1367 (94.2%) presented morphological characteristics of S. cerevisiae. We randomly selected 330 isolates from the positive colonies for strain identification. First, the PCR-Interdelta was optimized in ten commercial strains, using δ2–δ12 and δ12–δ21 pairs of primers, and δ2–δ12 primers were selected to screen the 330 isolates. We detected three fermentative profiles and a total of 25 PCR-Interdelta patterns were obtained, representing 7.6% of intraspecific variability, starting with the first non-official collection. The findings underscore the pivotal role of S. cerevisiae strain diversity in shaping the regional identity and quality of wines, with molecular tools like PCR-Interdelta analysis proving essential for monitoring intraspecific variability. Full article
Show Figures

Figure 1

24 pages, 5739 KiB  
Article
Multifaceted Biological Activities of Culinary Herb and Spice Extracts: In Vitro and In Silico Simulation Insights into Inflammation-Related Targets
by Nance Hontman, Jéssica Gonçalves, José S. Câmara and Rosa Perestrelo
Foods 2025, 14(9), 1456; https://doi.org/10.3390/foods14091456 - 23 Apr 2025
Viewed by 687
Abstract
Culinary herbs and spices are valued worldwide for their flavor, aroma, and medicinal benefits. They encompass diverse bioactive metabolites, such as polyphenols and terpenoids, which contribute to plant defense and offer anticarcinogenic, anti-inflammatory, antioxidant, and cognitive-enhancing effects. This study aimed to establish the [...] Read more.
Culinary herbs and spices are valued worldwide for their flavor, aroma, and medicinal benefits. They encompass diverse bioactive metabolites, such as polyphenols and terpenoids, which contribute to plant defense and offer anticarcinogenic, anti-inflammatory, antioxidant, and cognitive-enhancing effects. This study aimed to establish the volatile fingerprint of culinary herbs (lemon verbena, chives, basil, sage, coriander, and parsley) and spices (curcuma, nutmeg, cumin, black pepper, Jamaica pepper, and juniper berry) using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS). The predominant volatile organic metabolites (VOMs) identified were subjected to in silico molecular docking simulations of anti-Alzheimer’s (e.g., acetylcholinesterase (AChE), butyrylcholinesterase (BChE)), antioxidants (e.g., monoamine oxidase B (MAO-B), inducible nitric oxide synthase (iNOS)), and anti-inflammatory receptors (e.g., 5-lipoxygenase (5-LOX), cyclooxygenase-2 (COX-2)). The culinary herb and spice extracts were also subjected to in vitro assays to evaluate their potential as antioxidant (DPPH, ABTS, and ORAC) and anti-inflammatory (% protein denaturation) agents. A total of 121 VOMs were identified in the culinary herbs and spices, with the predominant chemical families being monoterpenoids (48.3%), sesquiterpenoids (14.0%), esters (11.9%), and carbonyl compounds (8.8%). In silico molecular docking simulations revealed that cuminaldehyde, β-caryophyllene, γ-curcumene, germacrene D, and τ-cadinol exhibited the strongest inhibitory activities against the selected receptors. Among the extracts, Jamaica pepper showed the highest antioxidant and anti-inflammatory activities, while lemon verbena exhibited the lowest ones. These findings highlight the promising potential of the studied culinary herbs and spices in the modulation of inflammatory processes related to Alzheimer’s disease. However, further investigations, particularly clinical studies, are recommended to validate these results and explore their therapeutic applications. Full article
Show Figures

Figure 1

25 pages, 3592 KiB  
Article
Edible Flowers in Modern Gastronomy: A Study of Their Volatilomic Fingerprint and Potential Health Benefits
by Begoña Fernández-Pintor, Rosa Perestelo, Sonia Morante-Zarcero, Isabel Sierra and José S. Câmara
Molecules 2025, 30(8), 1799; https://doi.org/10.3390/molecules30081799 - 17 Apr 2025
Viewed by 822
Abstract
Given the transformation that gastronomy has undergone in recent years, there is a need to characterize some new foods that are being incorporated into the modern diet. Among them, edible flowers stand out, which are used today not only to enhance the organoleptic [...] Read more.
Given the transformation that gastronomy has undergone in recent years, there is a need to characterize some new foods that are being incorporated into the modern diet. Among them, edible flowers stand out, which are used today not only to enhance the organoleptic properties of gourmet dishes but also for some of the beneficial properties they provide to human health. In this study, the volatilomic fingerprint of seven edible flowers that are used daily in Michelin-starred restaurants on Madeira Island was established. For this purpose, the extraction of volatile organic metabolites (VOMs) was carried out using the headspace solid-phase microextraction (HS-SPME) technique followed by gas chromatography coupled to mass spectrometry (GC-MS). The results showed a wide variability among the analyzed flowers. While fewer VOMs were detected in some flowers, other flowers, such as Viola tricolor and Rosa spp., exhibited a greater number of these compounds. Acmella oleracea had the highest number of detected VOMs. Each of these VOMs contributes to the characteristic aroma representative of the respective flower, highlighting their potential health benefits, as some are known for their anti-inflammatory, antimicrobial, and even anticancer properties. Full article
Show Figures

Graphical abstract

19 pages, 2781 KiB  
Article
A Comparative Study of the Biological Properties of Eugenia uniflora L. Fruits and Leaves Related to the Prevention of Cardiovascular Diseases
by Jéssica Gonçalves, Nance Hontman, Rosa Perestrelo and José S. Câmara
Life 2025, 15(2), 147; https://doi.org/10.3390/life15020147 - 22 Jan 2025
Viewed by 1488
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death globally, emphasizing the need for effective preventive strategies. Plant-based foods, rich in phytochemicals, offer a promising potential in CVD prevention. This study investigated the antioxidant, anti-inflammatory, and antihypertensive properties of two Eugenia uniflora L. [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of death globally, emphasizing the need for effective preventive strategies. Plant-based foods, rich in phytochemicals, offer a promising potential in CVD prevention. This study investigated the antioxidant, anti-inflammatory, and antihypertensive properties of two Eugenia uniflora L. varieties (orange and purple pitanga) and their leaves. Their antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation scavenging activity assays, while their antihypertensive activity was evaluated through angiotensin-converting enzyme (ACE) inhibition. Their anti-inflammatory potential was determined via protein denaturation inhibition. Both fruit varieties exhibited similar bioactivities, with the purple variety showing a slightly higher activity, except in the DPPH and ABTS assays. The leaves consistently demonstrated the lowest activities across all assays. Free polyphenols, dominated by gallic acid, were quantified using µ-QuEChERS followed by ultrahigh-performance liquid chromatography (UHPLC-PDA). The orange variety contained the highest concentration of gallic acid (13.1 mg/100 g DW). These findings highlight the potential of Eugenia uniflora L. extracts as natural antioxidant, anti-inflammatory, and antihypertensive agents, suggesting their value in food, pharmaceutical, and cosmetic applications for promoting human health and preventing CVDs. Full article
Show Figures

Figure 1

35 pages, 2175 KiB  
Review
Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications—A Comprehensive Overview
by José S. Câmara, Rosa Perestrelo, Rui Ferreira, Cristina V. Berenguer, Jorge A. M. Pereira and Paula C. Castilho
Molecules 2024, 29(16), 3861; https://doi.org/10.3390/molecules29163861 - 15 Aug 2024
Cited by 49 | Viewed by 14313
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered [...] Read more.
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword “terpenoids”. A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered. Full article
(This article belongs to the Special Issue Functional Foods and Dietary Bioactives in Human Health)
Show Figures

Figure 1

27 pages, 2039 KiB  
Review
Secondary Bioactive Metabolites from Foods of Plant Origin as Theravention Agents against Neurodegenerative Disorders
by Telma Marisa Gomes, Patrícia Sousa, Catarina Campos, Rosa Perestrelo and José S. Câmara
Foods 2024, 13(14), 2289; https://doi.org/10.3390/foods13142289 - 20 Jul 2024
Cited by 2 | Viewed by 3090
Abstract
Neurodegenerative disorders (NDDs) such as Alzheimer’s (AD) and Parkinson’s (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from [...] Read more.
Neurodegenerative disorders (NDDs) such as Alzheimer’s (AD) and Parkinson’s (PD) are on the rise, robbing people of their memories and independence. While risk factors such as age and genetics play an important role, exciting studies suggest that a diet rich in foods from plant origin may offer a line of defense. These kinds of foods, namely fruits and vegetables, are packed with a plethora of powerful bioactive secondary metabolites (SBMs), including terpenoids, polyphenols, glucosinolates, phytosterols and capsaicinoids, which exhibit a wide range of biological activities including antioxidant, antidiabetic, antihypertensive, anti-Alzheimer’s, antiproliferative, and antimicrobial properties, associated with preventive effects in the development of chronic diseases mediated by oxidative stress such as type 2 diabetes mellitus, respiratory diseases, cancer, cardiovascular diseases, and NDDs. This review explores the potential of SBMs as theravention agents (metabolites with therapeutic and preventive action) against NDDs. By understanding the science behind plant-based prevention, we may be able to develop new strategies to promote brain health and prevent the rise in NDDs. The proposed review stands out by emphasizing the integration of multiple SBMs in plant-based foods and their potential in preventing NDDs. Previous research has often focused on individual compounds or specific foods, but this review aims to present a comprehensive fingerprint of how a diet rich in various SBMs can synergistically contribute to brain health. The risk factors related to NDD development and the diagnostic process, in addition to some examples of food-related products and medicinal plants that significantly reduce the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), are highlighted. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

20 pages, 1870 KiB  
Review
Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications
by Teresa Abreu, Patrícia Sousa, Jéssica Gonçalves, Nance Hontman, Juan Teixeira, José S. Câmara and Rosa Perestrelo
Beverages 2024, 10(2), 45; https://doi.org/10.3390/beverages10020045 - 17 Jun 2024
Cited by 18 | Viewed by 4999
Abstract
Growing consumer demand for environmentally conscious, sustainable, and helpful products has prompted scientists and industry experts worldwide to look for inventive approaches to mitigate the environmental impact, particularly concerning agricultural and industrial waste. Among the by-products of winemaking, grape pomace (skins, seeds, stems) [...] Read more.
Growing consumer demand for environmentally conscious, sustainable, and helpful products has prompted scientists and industry experts worldwide to look for inventive approaches to mitigate the environmental impact, particularly concerning agricultural and industrial waste. Among the by-products of winemaking, grape pomace (skins, seeds, stems) has the potential to be economically valuable as it is rich in value-added compounds (e.g., phenolic compounds, fibers, flavonoids, anthocyanins, terpenoids) related to health (e.g., antioxidant, antimicrobial, anti-inflammatory, cardioprotective effects) and technological issues (e.g., extraction of value-added compounds). These value-added compounds can be extracted using emerging green extraction techniques and then used in the food industry as preservatives, colorants, and for the formulation of functional foods, as well as in the development of smart food packaging. This review provides an overview of the value-added compounds identified in grape pomace, the emerging green extraction, and integrated approaches to extract value-added compounds based on the literature published in the last five years. The potential applications of these value-added compounds have been extensively researched for the food industry. Full article
(This article belongs to the Section Wine, Spirits and Oenological Products)
Show Figures

Figure 1

34 pages, 1642 KiB  
Review
What Are We Eating? Surveying the Presence of Toxic Molecules in the Food Supply Chain Using Chromatographic Approaches
by Natalia Casado, Cristina V. Berenguer, José S. Câmara and Jorge A. M. Pereira
Molecules 2024, 29(3), 579; https://doi.org/10.3390/molecules29030579 - 24 Jan 2024
Cited by 3 | Viewed by 2973
Abstract
Consumers in developed and Western European countries are becoming more aware of the impact of food on their health, and they demand clear, transparent, and reliable information from the food industry about the products they consume. They recognise that food safety risks are [...] Read more.
Consumers in developed and Western European countries are becoming more aware of the impact of food on their health, and they demand clear, transparent, and reliable information from the food industry about the products they consume. They recognise that food safety risks are often due to the unexpected presence of contaminants throughout the food supply chain. Among these, mycotoxins produced by food-infecting fungi, endogenous toxins from certain plants and organisms, pesticides, and other drugs used excessively during farming and food production, which lead to their contamination and accumulation in foodstuffs, are the main causes of concern. In this context, the goals of this review are to provide a comprehensive overview of the presence of toxic molecules reported in foodstuffs since 2020 through the Rapid Alert System for Food and Feed (RASFF) portal and use chromatography to address this challenge. Overall, natural toxins, environmental pollutants, and food-processing contaminants are the most frequently reported toxic molecules, and liquid chromatography and gas chromatography are the most reliable approaches for their control. However, faster, simpler, and more powerful analytical procedures are necessary to cope with the growing pressures on the food chain supply. Full article
Show Figures

Graphical abstract

17 pages, 8323 KiB  
Article
mTORC1 Signaling in AgRP Neurons Is Not Required to Induce Major Neuroendocrine Adaptations to Food Restriction
by Gabriel O. de Souza, Pryscila D. S. Teixeira, Niels O. S. Câmara and Jose Donato
Cells 2023, 12(20), 2442; https://doi.org/10.3390/cells12202442 - 12 Oct 2023
Cited by 4 | Viewed by 2341
Abstract
Hypothalamic mTORC1 signaling is involved in nutrient sensing. Neurons that express the agouti-related protein (AgRP) are activated by food restriction and integrate interoceptive and exteroceptive signals to control food intake, energy expenditure, and other metabolic responses. To determine whether mTORC1 signaling in AgRP [...] Read more.
Hypothalamic mTORC1 signaling is involved in nutrient sensing. Neurons that express the agouti-related protein (AgRP) are activated by food restriction and integrate interoceptive and exteroceptive signals to control food intake, energy expenditure, and other metabolic responses. To determine whether mTORC1 signaling in AgRP neurons is necessary for regulating energy and glucose homeostasis, especially in situations of negative energy balance, mice carrying ablation of the Raptor gene exclusively in AgRP-expressing cells were generated. AgRPΔRaptor mice showed no differences in body weight, fat mass, food intake, or energy expenditure; however, a slight improvement in glucose homeostasis was observed compared to the control group. When subjected to 5 days of food restriction (40% basal intake), AgRPΔRaptor female mice lost less lean body mass and showed a blunted reduction in energy expenditure, whereas AgRPΔRaptor male mice maintained a higher energy expenditure compared to control mice during the food restriction and 5 days of refeeding period. AgRPΔRaptor female mice did not exhibit the food restriction-induced increase in serum corticosterone levels. Finally, although hypothalamic fasting- or refeeding-induced Fos expression showed no differences between the groups, AgRPΔRaptor mice displayed increased hyperphagia during refeeding. Thus, some metabolic and neuroendocrine responses to food restriction are disturbed in AgRPΔRaptor mice. Full article
(This article belongs to the Special Issue Hypothalamic Hormonal Secretion and Metabolism)
Show Figures

Figure 1

24 pages, 2025 KiB  
Review
Management of Agri-Food Waste Based on Thermochemical Processes towards a Circular Bioeconomy Concept: The Case Study of the Portuguese Industry
by Cristina V. Berenguer, Rosa Perestrelo, Jorge A. M. Pereira and José S. Câmara
Processes 2023, 11(10), 2870; https://doi.org/10.3390/pr11102870 - 29 Sep 2023
Cited by 8 | Viewed by 2878
Abstract
Sustainable biomass production has a significant potential for mitigating greenhouse gas emissions, providing an alternative to produce eco-friendly biofuels, biochemicals, and carbonaceous materials for biological, energetic, and environmental applications. Biomass from agroforestry and agricultural wastes is the richest natural carbon source and a [...] Read more.
Sustainable biomass production has a significant potential for mitigating greenhouse gas emissions, providing an alternative to produce eco-friendly biofuels, biochemicals, and carbonaceous materials for biological, energetic, and environmental applications. Biomass from agroforestry and agricultural wastes is the richest natural carbon source and a sustainable option for woody biomass from a circular economic perspective. The European Union (EU) is estimated to produce 1.3 billion tons of agri-food waste annually. Portugal has a large supply of residual biomass, as well as other byproducts and wastes from forestry, agriculture, and the food industry, and has a high availability of residual biomass. By using biomass waste to create high-value products, Portugal envisages an improvement in its economic performance, while reducing its dependence on energy imports and fossil fuel use. This review explores the potential of agri-food waste obtained from Portuguese industries through thermochemical conversion technologies as a promising sustainable substitute for wood-based biomass for the development of eco-friendly biofuels, biochemicals, and high-value carbonaceous materials, and their applications. This strategy, based on the circular bioeconomy concept, can help reduce reliance on fossil fuels, reduce greenhouse gas emissions, fulfil the needs of the growing population, and offer a sustainable waste management solution. Full article
(This article belongs to the Special Issue Thermochemical Conversion of Agricultural and Food Processing Waste)
Show Figures

Figure 1

33 pages, 2982 KiB  
Review
MALDI-TOF MS: A Promising Analytical Approach to Cancer Diagnostics and Monitoring
by Patrícia Sousa, Laurentina Silva, Catarina Luís, José S. Câmara and Rosa Perestrelo
Separations 2023, 10(8), 453; https://doi.org/10.3390/separations10080453 - 14 Aug 2023
Cited by 6 | Viewed by 7330
Abstract
Cancer remains the second most common cause of death after cardiovascular diseases, accounting for nearly 10 million deaths in 2020. Although the incidence of cancer increases considerably with age, the cancer burden can also be reduced and have a high chance of cure [...] Read more.
Cancer remains the second most common cause of death after cardiovascular diseases, accounting for nearly 10 million deaths in 2020. Although the incidence of cancer increases considerably with age, the cancer burden can also be reduced and have a high chance of cure through early detection, appropriate treatment, and care of patients. The development of high-throughput analytical approaches, like matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), contributes to identifying a pool of proteins/peptides as putative biomarkers for the early detection, diagnosis, and tumor progression. The purpose of the current review is to present an updated outline of recent proteome/peptidome research to establish putative cancer biomarkers using MALDI-TOF MS and highlight the applicability of statistical analysis in the oncology field. The pros and cons of MALDI-TOF MS application on cancer diagnostics and monitoring will be discussed, as well as compared with tandem mass spectrometry (MS/MS)-based proteomics (e.g., liquid chromatography–tandem mass spectrometry). In addition, pre-analytical (e.g., sample quality control) and analytical (e.g., sample pre-treatment, instrumental analytical conditions) properties that influence the robustness of MALDI-TOF MS data will be also discussed. Full article
Show Figures

Figure 1

16 pages, 5130 KiB  
Review
The Fingerprint of Fortified Wines—From the Sui Generis Production Processes to the Distinctive Aroma
by Rosa Perestrelo, Yassine Jaouhari, Teresa Abreu, Mariangie M. Castillo, Fabiano Travaglia, Jorge A. M. Pereira, José S. Câmara and Matteo Bordiga
Foods 2023, 12(13), 2558; https://doi.org/10.3390/foods12132558 - 30 Jun 2023
Cited by 4 | Viewed by 3281
Abstract
The fortified wines that originated in Mediterranean countries have, in common, a high alcohol content to increase their shelf-life during long journeys to northern Europe and the American continent. Nowadays, the world’s better-known wines, including Marsala, Madeira, Port, and Sherry, due to their [...] Read more.
The fortified wines that originated in Mediterranean countries have, in common, a high alcohol content to increase their shelf-life during long journeys to northern Europe and the American continent. Nowadays, the world’s better-known wines, including Marsala, Madeira, Port, and Sherry, due to their high alcoholic content, sweet taste, and intense aromatic profile, are designated as dessert wines and sometimes served as aperitifs. This review gives an overview of the traditional vinification process, including the microbiota and autochthonous yeast, as well as the regulatory aspects of the main Italian, Portuguese, and Spanish fortified wines. The winemaking process is essential to defining the volatile organic compounds (VOCs) that characterize the aroma of each fortified wine, giving them an organoleptic fingerprint and “terroir” characteristics. The various volatile and odorous compounds found in fortified wines during the oxidative aging are discussed in the last part of this review. Full article
(This article belongs to the Special Issue From Grapes to Wine: Trend of 2022)
Show Figures

Figure 1

Back to TopTop