Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications
Abstract
:1. Introduction
2. Review Design
3. Efficient and Sustainable Approaches for Grape Pomace Valorization
3.1. Biological Conversion
3.2. Thermochemical Conversion
3.3. Extraction of Value-Added Compounds
4. Potential Food Industrial Applications
4.1. Antioxidant and Antimicrobial Agents
4.2. Dietary Fibers
4.3. Flavor Enhancers
4.4. Natural Colorants
4.5. Functional Ingredients in Foods
4.6. Prebiotic Potential
5. Conclusions and Future Trends
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manca, M.L.; Casula, E.; Marongiu, F.; Bacchetta, G.; Sarais, G.; Zaru, M.; Escribano-Ferrer, E.; Peris, J.E.; Usach, I.; Fais, S.; et al. From Waste to Health: Sustainable Exploitation of Grape Pomace Seed Extract to Manufacture Antioxidant, Regenerative and Prebiotic Nanovesicles within Circular Economy. Sci. Rep. 2020, 10, 14184–14197. [Google Scholar] [CrossRef]
- Perra, M.; Bacchetta, G.; Muntoni, A.; De Gioannis, G.; Castangia, I.; Rajha, H.N.; Manca, M.L.; Manconi, M. An Outlook on Modern and Sustainable Approaches to the Management of Grape Pomace by Integrating Green Processes, Biotechnologies and Advanced Biomedical Approaches. J. Funct. Foods 2022, 98, 105276–105285. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Gando-Ferreira, L.M.; Quina, M.J. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022, 27, 4709. [Google Scholar] [CrossRef]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green Processing and Biotechnological Potential of Grape Pomace: Current Trends and Opportunities for Sustainable Biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef]
- Oliveira, M.; Duarte, E. Integrated Approach to Winery Waste: Waste Generation and Data Consolidation. Front. Environ. Sci. Eng. 2016, 10, 168–176. [Google Scholar] [CrossRef]
- Yang, C.; Han, Y.; Tian, X.; Sajid, M.; Mehmood, S.; Wang, H.; Li, H. Phenolic Composition of Grape Pomace and Its Metabolism. Crit. Rev. Food Sci. Nutr. 2022, 64, 1–18. [Google Scholar] [CrossRef]
- Castellanos-Gallo, L.; Ballinas-Casarrubias, L.; Espinoza-Hicks, J.C.; Hernández-Ochoa, L.R.; Muñoz-Castellanos, L.N.; Zermeño-Ortega, M.R.; Borrego-Loya, A.; Salas, E. Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes 2022, 10, 469. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Kandylis, P. Grape Pomace, an Undervalued by-Product: Industrial Reutilization within a Circular Economy Vision. Rev. Environ. Sci. Biotechnol. 2023, 22, 739–773. [Google Scholar] [CrossRef]
- Iqbal, A.; Schulz, P.; Rizvi, S.S.H. Valorization of Bioactive Compounds in Fruit Pomace from Agro-Fruit Industries: Present Insights and Future Challenges. Food Biosci. 2021, 44, 101384–101399. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.L. Anaerobic Digestion of Nine Varieties of Grape Pomace: Correlation between Biochemical Composition and Methane Production. Biomass Bioenergy 2017, 107, 335–344. [Google Scholar] [CrossRef]
- Barakat, N.; Bouajila, J.; Beaufort, S.; Rizk, Z.; Taillandier, P.; El Rayess, Y. Development of a New Kombucha from Grape Pomace: The Impact of Fermentation Conditions on Composition and Biological Activities. Beverages 2024, 10, 29. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel Application and Industrial Exploitation of Winery By-Products. Bioresour. Bioprocess. 2018, 5, 46–66. [Google Scholar] [CrossRef]
- Ilyas, T.; Chowdhary, P.; Chaurasia, D.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Sustainable Green Processing of Grape Pomace for the Production of Value-Added Products: An Overview. Environ. Technol. Innov. 2021, 23, 101592–101616. [Google Scholar] [CrossRef]
- Antonić, B.; Jančíková, S.; Dordević, D.; Tremlová, B. Grape Pomace Valorization: A Systematic Review and Meta-Analysis. Foods 2020, 9, 1627. [Google Scholar] [CrossRef]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef]
- Monari, S.; Ferri, M.; Vannini, M.; Sisti, L.; Marchese, P.; Ehrnell, M.; Xanthakis, E.; Celli, A.; Tassoni, A. Cascade Strategies for the Full Valorisation of Garganega White Grape Pomace towards Bioactive Extracts and Bio-Based Materials. PLoS ONE 2020, 15, e0239629. [Google Scholar] [CrossRef]
- Farru, G.; Cappai, G.; Carucci, A.; De Gioannis, G.; Asunis, F.; Milia, S.; Muntoni, A.; Perra, M.; Serpe, A. A Cascade Biorefinery for Grape Marc: Recovery of Materials and Energy through Thermochemical and Biochemical Processes. Sci. Total Environ. 2022, 846, 157464–157473. [Google Scholar] [CrossRef]
- Filippi, K.; Georgaka, N.; Alexandri, M.; Papapostolou, H.; Koutinas, A. Valorisation of Grape Stalks and Pomace for the Production of Bio-Based Succinic Acid by Actinobacillus Succinogenes. Ind. Crops Prod. 2021, 168, 113578–113587. [Google Scholar] [CrossRef]
- Jin, Q.; Neilson, A.P.; Stewart, A.C.; O’Keefe, S.F.; Kim, Y.T.; McGuire, M.; Wilder, G.; Huang, H. Integrated Approach for the Valorization of Red Grape Pomace: Production of Oil, Polyphenols, and Acetone-Butanol-Ethanol. ACS Sustain. Chem. Eng. 2018, 6, 16279–16286. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Llimós, J.; Ponsá, S. Integrated Solid-State Enzymatic Hydrolysis and Solid-State Fermentation for Producing Sustainable Polyhydroxyalkanoates from Low-Cost Agro-Industrial Residues. Food Bioprod. Process. 2021, 126, 334–344. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M. Valorisation of Grape Pomace: An Approach That Is Increasingly Reaching Its Maturity—A Review. Int. J. Food Sci. Technol. 2019, 54, 933–942. [Google Scholar] [CrossRef]
- Cortés, A.; Moreira, M.T.; Domínguez, J.; Lores, M.; Feijoo, G. Unraveling the Environmental Impacts of Bioactive Compounds and Organic Amendment from Grape Marc. J. Environ. Manag. 2020, 272, 111066–111074. [Google Scholar] [CrossRef] [PubMed]
- Javier, H.; Siles, J.Á.; Aida, G.; del Carmen, G.M.; de los Ángeles, M.M. Revalorization of Grape Marc Waste from Liqueur Wine: Biomethanization. J. Chem. Technol. Biotechnol. 2019, 94, 1499–1508. [Google Scholar] [CrossRef]
- Perera, S.M.H.D.; Wickramasinghe, C.; Samarasiri, B.K.T.; Narayana, M. Modeling of Thermochemical Conversion of Waste Biomass—A Comprehensive Review. Biofuel Res. J. 2021, 8, 1481–1528. [Google Scholar] [CrossRef]
- Perra, M.; Cuena-Lombraña, A.; Bacchetta, G.; Manca, M.L.; Manconi, M.; Maroun, R.G.; Muntoni, A.; Tuberoso, C.I.G.; Gil, K.A.; De Gioannis, G. Combining Different Approaches for Grape Pomace Valorization: Polyphenols Extraction and Composting of the Exhausted Biomass. Sustainability 2022, 14, 10690. [Google Scholar] [CrossRef]
- del Pozo, C.; Bartrolí, J.; Alier, S.; Puy, N.; Fàbregas, E. Production, Identification, and Quantification of Antioxidants from Torrefaction and Pyrolysis of Grape Pomace. Fuel Process. Technol. 2021, 211, 106602–106611. [Google Scholar] [CrossRef]
- Yoon, J.Y.; Kim, J.E.; Song, H.J.; Oh, K.B.; Jo, J.W.; Yang, Y.H.; Lee, S.H.; Kang, G.; Kim, H.J.; Choi, Y.K. Assessment of Adsorptive Behaviors and Properties of Grape Pomace-Derived Biochar as Adsorbent for Removal of Cymoxanil Pesticide. Environ. Technol. Innov. 2021, 21, 101242–101250. [Google Scholar] [CrossRef]
- Zabaniotou, A.; Kamaterou, P.; Pavlou, A.; Panayiotou, C. Sustainable Bioeconomy Transitions: Targeting Value Capture by Integrating Pyrolysis in a Winery Waste Biorefinery. J. Clean. Prod. 2018, 172, 3387–3397. [Google Scholar] [CrossRef]
- Salaudeen, S.A.; Acharya, B.; Dutta, A. Steam Gasification of Hydrochar Derived from Hydrothermal Carbonization of Fruit Wastes. Renew. Energy 2021, 171, 582–591. [Google Scholar] [CrossRef]
- Moro, K.I.B.; Bender, A.B.B.; da Silva, L.P.; Penna, N.G. Green Extraction Methods and Microencapsulation Technologies of Phenolic Compounds from Grape Pomace: A Review. Food Bioprocess Technol. 2021, 14, 1407–1431. [Google Scholar] [CrossRef]
- Aresta, A.; Cotugno, P.; De Vietro, N.; Massari, F.; Zambonin, C. Determination of Polyphenols and Vitamins in Wine-Making by-Products by Supercritical Fluid Extraction (SFE). Anal. Lett. 2020, 53, 2585–2595. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A.; Scalet, M. Improved Sustainability in Wine Industry Byproducts: A Scale-up and Economical Feasibility Study for High-Value Compounds Extraction Using Modified SC-CO2. ACS Omega 2022, 7, 33845–33857. [Google Scholar] [CrossRef] [PubMed]
- Neto, R.T.; Santos, S.A.O.; Oliveira, J.; Silvestre, A.J.D. Impact of Eutectic Solvents Utilization in the Microwave Assisted Extraction of Proanthocyanidins from Grape Pomace. Molecules 2022, 27, 246. [Google Scholar] [CrossRef]
- Onache, P.A.; Geana, E.I.; Ciucure, C.T.; Florea, A.; Sumedrea, D.I.; Ionete, R.E.; Tița, O. Bioactive Phytochemical Composition of Grape Pomace Resulted from Different White and Red Grape Cultivars. Separations 2022, 9, 395. [Google Scholar] [CrossRef]
- Marianne, L.-C.; Lucía, A.-G.; de Jesús, M.-S.M.; Eric Leonardo, H.-M.; Mendoza-Sánchez, M. Optimization of the Green Extraction Process of Antioxidants Derived from Grape Pomace. Sustain. Chem. Pharm. 2024, 37, 101396. [Google Scholar] [CrossRef]
- Silva, J.T.P.; Borges, M.H.; de Souza, C.A.C.; Fávaro-Trindade, C.S.; Sobral, P.A.; de Oliveira, A.L.; Martelli-Tosi, M. Grape Pomace Rich-Phenolics and Anthocyanins Extract: Production by Pressurized Liquid Extraction in Intermittent Process and Encapsulation by Spray-Drying. Foods 2024, 13, 279. [Google Scholar] [CrossRef]
- Abouelenein, D.; Mustafa, A.M.; Caprioli, G.; Ricciutelli, M.; Sagratini, G.; Vittori, S. Phenolic and Nuntritional Profiles, and Antioxidant Activity of Grape Pomaces and Seeds from Lacrima Di Morro d’Alba and Verdicchio Varieties. Food Biosci. 2023, 53, 102808. [Google Scholar] [CrossRef]
- Meini, M.R.; Cabezudo, I.; Galetto, C.S.; Romanini, D. Production of Grape Pomace Extracts with Enhanced Antioxidant and Prebiotic Activities through Solid-State Fermentation by Aspergillus Niger and Aspergillus Oryzae. Food Biosci. 2021, 42. [Google Scholar] [CrossRef]
- Iacono, E.; Di Marzo, C.; Di Stasi, M.; Cioni, E.; Gambineri, F.; Luminare, A.G.; De Leo, M.; Braca, A.; Quaranta, P.; Lai, M.; et al. Broad-Spectrum Virucidal Activity of a Hydroalcoholic Extract of Grape Pomace. Bioresour. Technol. Rep. 2024, 25, 101745. [Google Scholar] [CrossRef]
- Ranganathan, A.; Tripathi, J.; Iftikhar, S.; Paroha, S. Production of Wine from Red Grapes & Study the Effect of Pomace on Seed Germination. Int. J. Agric. Ext. Soc. Dev. 2024, 7, 38–44. [Google Scholar] [CrossRef]
- Thema, K.K.; Mlambo, V.; Egbu, C.F.; Mnisi, C.M. Use of Red Grape Pomace and Aloe Vera Gel as Nutraceuticals to Ameliorate Stocking Density-Induced Stress in Commercial Male Broilers. Trop. Anim. Health Prod. 2024, 56, 107. [Google Scholar] [CrossRef] [PubMed]
- Tsantila, E.M.; Esslinger, N.; Christou, M.; Papageorgis, P.; Neophytou, C.M. Antioxidant and Anticancer Activity of Vitis Vinifera Extracts in Breast Cell Lines. Life 2024, 14, 228. [Google Scholar] [CrossRef] [PubMed]
- Cañadas, R.; Díaz, I.; Sánchez-Monedero, A.; González, E.J.; González-Miquel, M. Green Extraction of Natural Antioxidants from White Grape Waste Using Bio-Renewable Solvents and Ultrasonic Process Intensification. Chem. Eng. Process.-Process Intensif. 2024, 196, 109644. [Google Scholar] [CrossRef]
- González, M.; Barrios, S.; Budelli, E.; Pérez, N.; Lema, P.; Heinzen, H. Ultrasound Assisted Extraction of Bioactive Compounds in Fresh and Freeze-Dried Vitis Vinifera Cv Tannat Grape Pomace. Food Bioprod. Process. 2020, 124, 378–386. [Google Scholar] [CrossRef]
- Ribeiro, L.F.; Ribani, R.H.; Stafussa, A.P.; Makara, C.N.; Branco, I.G.; Maciel, G.M.; Haminiuk, C.W.I. Exploratory Analysis of Bioactive Compounds and Antioxidant Potential of Grape (Vitis vinifera) Pomace. Acta Sci.-Technol. 2022, 44, e56934–e56944. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185–125193. [Google Scholar] [CrossRef]
- Costa-Pérez, A.; Medina, S.; Sánchez-Bravo, P.; Domínguez-Perles, R.; García-Viguera, C. The (Poly)Phenolic Profile of Separate Winery by-Products Reveals Potential Antioxidant Synergies. Molecules 2023, 28, 2081. [Google Scholar] [CrossRef]
- Pérez-Ortiz, J.M.; Alguacil, L.F.; Salas, E.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; González-Martín, C. Antiproliferative and Cytotoxic Effects of Grape Pomace and Grape Seed Extracts on Colorectal Cancer Cell Lines. Food Sci. Nutr. 2019, 7, 2948–2957. [Google Scholar] [CrossRef] [PubMed]
- Spinei, M.; Oroian, M. Microwave-Assisted Extraction of Pectin from Grape Pomace. Sci. Rep. 2022, 12, 12722–12738. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Structural, Functional and Physicochemical Properties of Pectin from Grape Pomace as Affected by Different Extraction Techniques. Int. J. Biol. Macromol. 2023, 224, 739–753. [Google Scholar] [CrossRef]
- Punzo, A.; Porru, E.; Silla, A.; Simoni, P.; Galletti, P.; Roda, A.; Tagliavini, E.; Samorì, C.; Caliceti, C. Grape Pomace for Topical Application: Green Nades Sustainable Extraction, Skin Permeation Studies, Antioxidant and Anti-Inflammatory Activities Characterization in 3d Human Keratinocytes. Biomolecules 2021, 11, 1181. [Google Scholar] [CrossRef] [PubMed]
- Bender, A.B.B.; Speroni, C.S.; Moro, K.I.B.; Morisso, F.D.P.; dos Santos, D.R.; da Silva, L.P.; Penna, N.G. Effects of Micronization on Dietary Fiber Composition, Physicochemical Properties, Phenolic Compounds, and Antioxidant Capacity of Grape Pomace and Its Dietary Fiber Concentrate. LWT 2020, 117, 108652. [Google Scholar] [CrossRef]
- Abreu, T.; Jasmins, G.; Bettencourt, C.; Teixeira, J.; Câmara, J.S.; Perestrelo, R. Tracing the Volatilomic Fingerprint of Grape Pomace as a Powerful Approach for Its Valorization. Curr. Res. Food Sci. 2023, 7, 100608. [Google Scholar] [CrossRef] [PubMed]
- Difonzo, G.; Troilo, M.; Allegretta, I.; Pasqualone, A.; Caponio, F. Grape Skin and Seed Flours as Functional Ingredients of Pizza: Potential and Drawbacks Related to Nutritional, Physicochemical and Sensory Attributes. LWT 2023, 175, 114494. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nobre, C.; Rodrigues, R.M.; Genisheva, Z.; Botelho, C.; Teixeira, J.A. Extraction of Phenolic Compounds from Grape Pomace Using Ohmic Heating: Chemical Composition, Bioactivity and Bioaccessibility. Food Chem. 2024, 436, 137780. [Google Scholar] [CrossRef]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef]
- Sateriale, D.; Forgione, G.; Di Rosario, M.; Pagliuca, C.; Colicchio, R.; Salvatore, P.; Paolucci, M.; Pagliarulo, C. Vine-Winery Byproducts as Precious Resource of Natural Antimicrobials: In Vitro Antibacterial and Antibiofilm Activity of Grape Pomace Extracts against Foodborne Pathogens. Microorganisms 2024, 12, 437. [Google Scholar] [CrossRef]
- Mugnaini, G.; Bonini, M.; Gentile, L.; Panza, O.; Del Nobile, M.A.; Conte, A.; Esposito, R.; D’Errico, G.; Moccia, F.; Panzella, L. Effect of Design and Molecular Interactions on the Food Preserving Properties of Alginate/Pullulan Edible Films Loaded with Grape Pomace Extract. J. Food Eng. 2024, 361, 111761. [Google Scholar] [CrossRef]
- Zainal Arifin, M.A.; Mohd Adzahan, N.; Zainal Abedin, N.H.; Lasik-Kurdyś, M. Utilization of Food Waste and By-Products in the Fabrication of Active and Intelligent Packaging for Seafood and Meat Products. Foods 2023, 12, 456. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Arjona-Mudarra, P.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J.; Pereyra, C. Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.J.; de Oliveira, M.M.; Wang, S.H.; Carastan, D.J.; Rosa, D.S. Designing Antimicrobial Polypropylene Films with Grape Pomace Extract for Food Packaging. Food Packag. Shelf Life 2022, 34, 100929. [Google Scholar] [CrossRef]
- Martín-Mateos, M.J.; Delgado-Adámez, J.; Moreno-Cardona, D.; Valdés-Sánchez, M.E.; Ramírez-Bernabé, M.R. Application of White-Wine-Pomace-Derived Ingredients in Extending Storage Stability of Fresh Pork Burgers. Foods 2023, 12, 4468. [Google Scholar] [CrossRef] [PubMed]
- Megías-Pérez, R.; Ferreira-Lazarte, A.; Villamiel, M. Valorization of Grape Pomace as a Renewable Source of Techno-Functional and Antioxidant Pectins. Antioxidants 2023, 12, 957. [Google Scholar] [CrossRef] [PubMed]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Pasqualone, A.; Caponio, F. Grape Pomace as Innovative Flour for the Formulation of Functional Muffins: How Particle Size Affects the Nutritional, Textural and Sensory Properties. Foods 2022, 11, 1799. [Google Scholar] [CrossRef] [PubMed]
- Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G.; Simonato, B. Breadstick Fortification with Red Grape Pomace: Effect on Nutritional, Technological and Sensory Properties. J. Sci. Food Agric. 2022, 102, 2545–2552. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Lomuscio, E.; Rizzi, C.; Simonato, B. Predicted Shelf-Life, Thermodynamic Study and Antioxidant Capacity of Breadsticks Fortified with Grape Pomace Powders. Foods 2021, 10, 2815. [Google Scholar] [CrossRef] [PubMed]
- Câmara, J.S.; Lourenço, S.; Silva, C.; Lopes, A.; Andrade, C.; Perestrelo, R. Exploring the Potential of Wine Industry By-Products as Source of Additives to Improve the Quality of Aquafeed. Microchem. J. 2020, 155, 104758. [Google Scholar] [CrossRef]
- Liang, Z.; Pai, A.; Liu, D.; Luo, J.; Wu, J.; Fang, Z.; Zhang, P. Optimizing Extraction Method of Aroma Compounds from Grape Pomace. J. Food Sci. 2020, 85, 4225–4240. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Meneghetti, B.B.; Soares, I.H.B.T.; Soares, C.T.; Bevilaqua, G.; Fakhouri, F.M.; de Oliveira, R.A. Multipurpose Arrowroot Starch Films with Anthocyanin-Rich Grape Pomace Extract: Color Migration for Food Simulants and Monitoring the Freshness of Fish Meat. Int. J. Biol. Macromol. 2024, 265, 130934. [Google Scholar] [CrossRef] [PubMed]
- de Souza Mesquita, L.M.; Sosa, F.H.B.; Contieri, L.S.; Marques, P.R.; Viganó, J.; Coutinho, J.A.P.; Dias, A.C.R.V.; Ventura, S.P.M.; Rostagno, M.A. Combining Eutectic Solvents and Food-Grade Silica to Recover and Stabilize Anthocyanins from Grape Pomace. Food Chem. 2023, 406, 135093. [Google Scholar] [CrossRef] [PubMed]
- Romanini, E.B.; Rodrigues, L.M.; Stafussa, A.P.; Cantuaria Chierrito, T.P.; Teixeira, A.F.; Corrêa, R.C.G.; Madrona, G.S. Bioactive Compounds from BRS Violet Grape Pomace: An Approach of Extraction and Microencapsulation, Stability Protection and Food Application. Plants 2023, 12, 3177. [Google Scholar] [CrossRef] [PubMed]
- Baldán, Y.; Riveros, M.; Fabani, M.P.; Rodriguez, R. Grape Pomace Powder Valorization: A Novel Ingredient to Improve the Nutritional Quality of Gluten-Free Muffins. Biomass Convers. Biorefinery 2023, 13, 9997–10009. [Google Scholar] [CrossRef]
- Marcos, J.; Carriço, R.; Sousa, M.J.; Palma, M.L.; Pereira, P.; Nunes, M.C.; Nicolai, M. Effect of Grape Pomace Flour in Savory Crackers: Technological, Nutritional and Sensory Properties. Foods 2023, 12, 1392. [Google Scholar] [CrossRef] [PubMed]
- Milinčić, D.D.; Kostić, A.; Kolašinac, S.; Rac, V.; Banjac, N.; Lađarević, J.; Lević, S.; Pavlović, V.B.; Stanojević, S.P.; Nedović, V.A.; et al. Goat Milk Powders Enriched with Grape Pomace Seed Extract: Physical and Techno-Functional Properties. Food Hydrocoll. 2024, 146, 109293. [Google Scholar] [CrossRef]
- Antoniolli, A.; Becerra, L.; Piccoli, P.; Fontana, A. Phenolic, Nutritional and Sensory Characteristics of Bakery Foods Formulated with Grape Pomace. Plants 2024, 13, 590. [Google Scholar] [CrossRef] [PubMed]
- Tolve, R.; Simonato, B.; Rainero, G.; Bianchi, F.; Rizzi, C.; Cervini, M.; Giuberti, G. Wheat Bread Fortification by Grape Pomace Powder: Nutritional, Technological, Antioxidant, and Sensory Properties. Foods 2021, 10, 75. [Google Scholar] [CrossRef] [PubMed]
- Olt, V.; Báez, J.; Curbelo, R.; Boido, E.; Amarillo, M.; Gámbaro, A.; Alborés, S.; Gerez García, N.; Cesio, M.V.; Heinzen, H.; et al. Tannat Grape Pomace as an Ingredient for Potential Functional Biscuits: Bioactive Compound Identification, in Vitro Bioactivity, Food Safety, and Sensory Evaluation. Front. Nutr. 2023, 10, 1241105. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, M.; Bianchi, F.; Simonato, B.; Rizzi, C.; Fontana, A.; Tironi, V.A. Exploration of Grape Pomace Peels and Amaranth Flours as Functional Ingredients in the Elaboration of Breads: Phenolic Composition, Bioaccessibility, and Antioxidant Activity. Food Funct. 2024, 15, 608–624. [Google Scholar] [CrossRef]
- Scappaticci, G.; Mercanti, N.; Pieracci, Y.; Ferrari, C.; Mangia, R.; Marianelli, A.; Macaluso, M.; Zinnai, A. Bread Improvement with Nutraceutical Ingredients Obtained from Food By-Products: Effect on Quality and Technological Aspects. Foods 2024, 13, 825. [Google Scholar] [CrossRef] [PubMed]
- Rocchetti, G.; Rizzi, C.; Cervini, M.; Rainero, G.; Bianchi, F.; Giuberti, G.; Lucini, L.; Simonato, B. Impact of Grape Pomace Powder on the Phenolic Bioaccessibility and on In Vitro Starch Digestibility of Wheat Based Bread. Foods 2021, 10, 507. [Google Scholar] [CrossRef] [PubMed]
- Blicharz-Kania, A.; Vasiukov, K.; Sagan, A.; Andrejko, D.; Fifowska, W.; Domin, M. Nutritional Value, Physical Properties, and Sensory Quality of Sugar-Free Cereal Bars Fortified with Grape and Apple Pomace. Appl. Sci. 2023, 13, 10531. [Google Scholar] [CrossRef]
- Spinei, M.; Oroian, M. Characterization of Băbească Neagră Grape Pomace and Incorporation into Jelly Candy: Evaluation of Phytochemical, Sensory, and Textural Properties. Foods 2023, 13, 98. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.E.; Contini, L.; Garcia, V.A.d.S.; de Lima Cilli, L.P.; Chagas, E.G.L.; Andreo, M.A.; Vanin, F.M.; Carvalho, R.A.; Sinnecker, P.; Venturini, A.C.; et al. Valorization of Grape By-products as Functional and Nutritional Ingredients for Healthy Pasta Development. J. Food Process. Preserv. 2022, 46, e17245. [Google Scholar] [CrossRef]
- Yavruyan, N.V.; Avetisyan, N.A. Food Powder Manufacture from Grape Pomace and Its Application as an Improver in the Macaroni Production. Agrisci. Technol. 2021, 4, 428–431. [Google Scholar] [CrossRef]
- la Gatta, B.; Rutigliano, M.; Liberatore, M.T.; Dilucia, F.; Palmitessa, M.; Di Luccia, A.; Lamacchia, C. Effect of the Addition of Freeze-Dried Grape Pomace on Fresh Tagliatelle Gluten Network and Relationship to Sensory and Chemical Quality. Foods 2023, 12, 2699. [Google Scholar] [CrossRef]
- Gaita, C.; Alexa, E.; Moigradean, D.; Conforti, F.; Poiana, M.-A. Designing of High Value-Added Pasta Formulas by Incorporation of Grape Pomace Skins. Rom. Biotechnol. Lett. 2020, 25, 1607–1614. [Google Scholar] [CrossRef]
- Gerardi, C.; D’Amico, L.; Durante, M.; Tufariello, M.; Giovinazzo, G. Whole Grape Pomace Flour as Nutritive Ingredient for Enriched Durum Wheat Pasta with Bioactive Potential. Foods 2023, 12, 2593. [Google Scholar] [CrossRef]
- Tolve, R.; Pasini, G.; Vignale, F.; Favati, F.; Simonato, B. Effect of Grape Pomace Addition on the Technological, Sensory, and Nutritional Properties of Durum Wheat Pasta. Foods 2020, 9, 354. [Google Scholar] [CrossRef]
- Dinu, L.-D.; Vamanu, E. Gut Microbiota Modulators Based on Polyphenols Extracted from Winery By-Products and Their Applications in the Nutraceutical Industry. Life 2024, 14, 414. [Google Scholar] [CrossRef] [PubMed]
- Caponio, G.R.; Minervini, F.; Tamma, G.; Gambacorta, G.; De Angelis, M. Promising Application of Grape Pomace and Its Agri-Food Valorization: Source of Bioactive Molecules with Beneficial Effects. Sustainability 2023, 15, 9075. [Google Scholar] [CrossRef]
- Anghel, L.; Milea, A.Ș.; Constantin, O.E.; Barbu, V.; Chițescu, C.; Enachi, E.; Râpeanu, G.; Mocanu, G.-D.; Stănciuc, N. Dried Grape Pomace with Lactic Acid Bacteria as a Potential Source for Probiotic and Antidiabetic Value-Added Powders. Food Chem. X 2023, 19, 100777. [Google Scholar] [CrossRef] [PubMed]
- Bordiga, M.; Montella, R.; Travaglia, F.; Arlorio, M.; Coïsson, J.D. Characterization of Polyphenolic and Oligosaccharidic Fractions Extracted from Grape Seeds Followed by the Evaluation of Prebiotic Activity Related to Oligosaccharides. Int. J. Food Sci. Technol. 2019, 54, 1283–1291. [Google Scholar] [CrossRef]
Grape Pomace | Extraction Procedure | Analytical Approach | Outcome | Ref |
---|---|---|---|---|
Cabernet Sauvignon | PLE: 40% (v/v) ethanol, 9 min, 5 cycles, 130 °C Sonification: acetone/H2O/acetic acid 70/28/2%v/v | HPLC | EY: 0.11 (sonification), 0.32 (PLE) g/g dw TPC: 10.4–72.6 mg(GAE)/g dw TA: 0.80–0.90 mg(C3GE)/g dw TPCA: 7.68–11.30 mg(PB2E/g dw TF: 10.5–50.3 mg(CAE)/g dw DPPH: 36.2–76.1 mg(TE)g dw ABTS: 66.9–109.3 mg(TE)g dw | [19] |
Merlot | LLE: S/L 1:50, 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100% of ethanol: H2O v/v) | HPLC-DAD | The best TPC, TFC, and TA were attained with ethanol: H2O (40:60 v/v). TPC: 649–2915 mg(GAE)/100 g dw TFC: 254–1793 mg(CAE)/100 g dw TA: 7.24–66.2 mg(C3GE)/100 g dw PC: syringic acid (46.1 mg/100 g dw), quercetin (31.2), vanillic acid (35.4), gallic acid (36.0) | [45] |
Garganega | SE: 75% acetone, S/L 1:5, 50 °C, 2 h PLE: 10.6 g GP, 100 bar, 1 h, 80 °C, 75% (ethanol:H2O 50:50 v/v), 25% CO2, 8 g/min | HPLC-DAD | EY: 51.1 (SE), 60.8 (PLE) g/kg TPC: 60.8–77.9 g(GAE)/kg dw PC: catechin, epicatechin gallate, epicatechin, epigallocatechin, rutin | [16] |
Feteasca Neagra, Merlot, Burgundy, Cabernet Sauvignon, Pinot Noir | MAE: ethanol:H2O 50% g/g, S/S 1:3 g/g, 100 °C, 5 min, 13 psi | UHPLC–ESI/HRMS | TPC: 17.1–25.6 mg(GAE)/g dw CAT: 17.7–20.7 mg(CAE)/g dw TAN: 179–448 mg/g dw TA: 26.8–156.6 mg(C3GE)/g dw DPPH: 41.7–85.1 µM(TE)/g dw PC: Quercetin (355–1445.7 mg/100 g dw), catechin (79.2–185.7), epicatechin (79.9–142.8), syringic acid (18.3–94.3), gallic acid (6.44–14.1), pinocembrin (0.81–45.4) | [34] |
White | MAE: 10% (m/m) of GP, 10 min, 100 °C, 2.7 g of ChCl:LacA: H2O (36:39:25% v/v) | HPLC-ESI-MS/MS | EY: 135 mg proanthocyanidins/g dw (MAE), 126 mg/g dw (conventional maceration) The extraction time was reduced from 1 h to 3.56 min. | [33] |
Grape pomace | NADES-UMAE: ChCl:citric acid (2:1) with 30% H2O/DES (v/v) 50 °C, 2 h, 300 W (MAE), 50 W (US) | HPLC | EY: 1.77 mg/g dw TPC: 2892 mg(GAE)/kg dw ORAC: 2190 mM(TE)/g dw PC: Malvidin-3-(6-O-p-coumaroyl) monoglucosides (1116 mg/kg dw), Malvidin-3-O-monoglucoside (556.8), catehin (266.6) | [46] |
Tannat | UAE: 3 g of GP, 60 mL ethanol/H2O 1:1 v/v | HPLC | UAE extracts were 50% richer in TPC and TMAC than conventional extractions. TPC: 7.8–77.6 mg(GAE)/g dw TMAC:1.29–5.46 mg(C3GE)/g dw TAC: 32.4–200.7 mg(TE)/g dw | [44] |
Lacrima Di Morro d’Alba and Verdicchio | UAE: 1 g of GP, 15 mL ethanol:H2O 70:30, v/v acidified HCl (0.1%), 40 KHz, 60 min, 25 °C | HPLC-ESI-MS/MS | TPC: 41.2–106.5 mg(GAE)/g dw TFC: 27.7–38.2 mg(RE)/g dw TA: 0.38–8.02 mg(C3GE)/g dw DPPH: 82.9–303.4 mg(TRE)/g dw PC: gallic acid (117.3–605.2 mg/kg dw), vanillic acid (200.4–713.6), quercetin (6–262.0), rutin (3.4–46.1), kaempferol (1.9–9), isorhamnetin (0.1–0.8) | [37] |
Monastrell | UAE: 100 mg of GP, 1 mL of methanol/formic acid/H2O (50:2:48, v/v/v), 60 min | HPLC-DAD-ESI-MS/MS | PC: Catechin (96.15 mg/kg dw), proanthocyanidin dimer (B-type) (84.60), proanthocyanidin dimer monogallate (45.04), epicatechin (42.0), proanthocyanidin dimer digallate (8.61), gallocatechin (7.99), catechin-gallocatechin (7.83) | [47] |
Red and white | SE: 150 g of GP, 300 mL of ethanol/H2O 50:50 v/v, 40 °C, 15 min | HPLC-DAD-ESI-MS/MS | Σflavonols: nd–204.5 µM/g dw Σanthocyanins: nd–57.7 µM/g dw Σflavan-3-ols: 245–826 µM/g dw Σ stilbenes: nd–1.06 µM/g dw | [48] |
Aresta White | SFE: 0.1 kg GP, 8 MPa, 40 °C, 10% (w/w) ethanol/240 min | HPLC-DAD-MS | EY: 2.3 g/100 g dw TPC: 2245 mg(GAE)/100 g dw DPPH: 5154 mg(α-tocopherol)/100 g dw TPCA: 0.994 g (CAE)/100 g dw PC: cis-resveratrol glucoside (2297 μg/100 g dw), cis-coutaric acid (1841), trans-p-coumaric acid (897), and quercetin (659) | [32] |
Merlot | SFE: 3 g GP, 60°C 250 bar, flow rate 2 mL/min. SLE: 5 g GP, 5 mL of 70% ethanol, 20 min | - | SFE obtains a higher EY of all analytes compared to SLE, except for β-sitosterol and α-tocopherol TPC: 570 µg(GAE)/g dw SFE, 650 µg(GAE)/g dw (SLE) DPPH: 0.118 mM (TE)/g dw (SFE), 0.141 mM (TE)/g dw (SLE) | [31] |
Syrah, Cabernet Sauvignon, Malbec Pinot-Noir and Marselan | Enzymatic extraction: pectinase, cellulase, tannase, 50 mM acetate buffer at S/L 1:10 (w/v) | HPLC-DAD | Both fungi increased the antioxidant activity of the extracts, reaching maximum values of 73.7 (A. niger) and 109 (A. oryzae) mM (TE)/100 g dw TPC: 0.49 to 0.81 g (GAE)/100 g dw TAC: 3.1 to 5.6 mM (TE)/100 g dw PC: syringic acid (0.13–0.17 g/100 g dw, gallic acid (0.03–0.16), (+)-catechin (0.018–0.028) | [38] |
Grape Pomace | HS-SPME Extraction | Analytical Approach | Main VOCs | Ref. |
---|---|---|---|---|
Tinta negra, Complexa, Verdelho, Malvasia roxa, Boal, Malvasia, Sercial, Terrantez, | 2 g GP, 0.5 g NaCl, 5 mL of H2O, 40 °C, 45 min, DVB/CAR/PDMS fiber | GC-MS | Ethyl acetate (0.23–47.3 µg/L) Hexan-1-ol (1.33–25.5 µg/L) (E)-2-hexenal (n.d.–8.60 µg/L) 3-Methyl butan-2-ol (0.02–8.18 µg/L) Isoamyl acetate (0.02–6.32 µg/L) Hexanal (0.64–6.16 µg/L) Menthol (n.d.–3.64 µg/L) | [50] |
Tinta Negra | 4 g GP, 2 g NaCl, 5 mL of H2O, 40 °C, 45 min, DVB/CAR/PDMS fiber | GC-MS | Methyl acetate (8.03 µg/L) 3-Hydroxy-2-butanone (5.97 µg/L) Acetic acid (4.48 µg/L) Methyl hexanoate (3.09 µg/L) | [68] |
Chardonnay | 1 mL GP extract, 9 mL H2O, 2 g NaCl, 35 °C, 30 min, PDMS/DVB fiber | GC-MS | 1-Butanol (0.81–0.96 µg/L) 1-Hexanol (1.58–9.25 µg/L) (E)-2-hexen-1-ol (0.38–2.01 µg/L) (E)-2-octen-1-ol (2.14–5.15 µg/L) Benzyl alcohol (0.17–0.92 µg/L) 2-Phenyl ethanol (0.16–0.76 µg/L) Geraniol (0.21–0.22 µg/L) | [69] |
Food Product | Amount of Grape Pomace | Main Outcome | Ref |
---|---|---|---|
Biscuits | 10% to 20% (w/w) grape pomace powder (GPP) | The integration of GPP on biscuits appeared to be an encouraging functional meal with the facility to alleviate oxidative stress and hyperglycemia. | [79] |
Bread | 5% (w/w) of GPP | The incorporation of GPP indicated a decrease in moisture content and a rise in anthocyanin levels. | [80] |
Bread | 2% (w/w) of GPP | Bread formulation with the incorporation of GPP produces the greatest results, as it allows for a product with a homogenous structure and improved volume. | [81] |
Bread | 5% and 10% (w/w) GPP | Fortification with GPP resulted in a significant increase in anthocyanins, lower starch hydrolysis, and predicted glycemic index. | [82] |
Breadsticks | 5 g and 10 g/100 g of GPP | Fortification of breadsticks with GPP improved TPC and antioxidant activity, as well as affected the rheological properties of doughs. | [66] |
Breadsticks | 5 g and 10 g/100 g of GPP | Antioxidant capacity within breadsticks declined over time, revealing that oxidation initiated and decreased antioxidant activities. | [67] |
Cereal bars | 10 g and 20 g of GPP | The fortified bars demonstrated alterations in properties, namely increased moisture, and soluble dietary fiber level. | [83] |
Gluten-free muffins | 108 g to 180 g | The addition of GPP improved the nutritional composition of the muffins as their content increased, emphasizing protein and crude fiber levels. | [74] |
Goat milk powders | 0.2 mg to 0.6 mg grape pomace seed extract (GPSE) | Functionally enhanced GPSE powders, exhibited remarkable emulsifying properties, positioning them as promising candidates for formulating new food products that need ideal emulsifying activity and stability. | [76] |
Jelly candy | 1 g of grape pomace | The incorporation of grape pomace enhanced phenolic content, oil-binding capacity, antioxidant activity, color, and textural parameters. | [84] |
Muffins | 15 g of GPP | The particle size of the GPP was found to affect the texture, color, antioxidant activity, and sensory properties of the muffins. | [65] |
Pasta | 25% and 50% of GPP | The pasta with 50% GPF demonstrated an excellent mix of antioxidant activity, nutritional value, consumer appeal, and promise as a new functional food. | [85] |
Pasta | 25% of GPP | The addition of GPP raised the amount of dietary fiber in the finished product by nearly 45 times. | [86] |
Pasta | 5% and 10% (w/w) GPP | Polyphenol concentration varied amongst GP-fresh pasta samples and rose proportionately with the quantity of GPP applied. The antioxidant activity of raw GP-fresh pasta samples did not differ but increased during cooking due to interactions between polyphenols in GPP and gluten proteins. | [87] |
Pasta | 3, 6 and 9% (w/w) GPP | The inclusion of GPS into pasta formulations of up to 6% resulted in products with better organoleptic and functional qualities. A 9% GPS level is not suggested in the pasta recipe because of the challenges that might develop in the pasta processing, in the reduction of the dough elasticity. | [88] |
Pizza bases | Grape pomace (mix of skin/seed flour 70:30 (w/w)) to replace 15–25% of wheat flour | The addition of grape pomace to pizza bases enhanced fiber content and antioxidant activity. Significant differences were observed in texture based on the type and percentage of grape pomace added. | [52] |
Savory crackers | 5%, 10% and 15% (w/w) GPP | The incorporation of GPP in savory crackers showed potential as a functional food, with novel colors and enhanced fiber amount. | [75] |
Wheat bread | 5 g and 10 g/100 g GPP | The incorporation of GPP in wheat bread changed the taste, color, and flavor of the bread. | [78] |
Wheat pasta | 4% (w/w) GPP | The incorporation of GPP improved phenolic content, antioxidant activity, carotenoids, tocochromanols, and fiber content. | [89] |
Wheat pasta | 5 g and 10 g grape pomace/100 g | Pasta fortified with grape pomace increased TPC, antioxidant activity, and fiber content in cooked products. | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abreu, T.; Sousa, P.; Gonçalves, J.; Hontman, N.; Teixeira, J.; Câmara, J.S.; Perestrelo, R. Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications. Beverages 2024, 10, 45. https://doi.org/10.3390/beverages10020045
Abreu T, Sousa P, Gonçalves J, Hontman N, Teixeira J, Câmara JS, Perestrelo R. Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications. Beverages. 2024; 10(2):45. https://doi.org/10.3390/beverages10020045
Chicago/Turabian StyleAbreu, Teresa, Patrícia Sousa, Jéssica Gonçalves, Nance Hontman, Juan Teixeira, José S. Câmara, and Rosa Perestrelo. 2024. "Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications" Beverages 10, no. 2: 45. https://doi.org/10.3390/beverages10020045
APA StyleAbreu, T., Sousa, P., Gonçalves, J., Hontman, N., Teixeira, J., Câmara, J. S., & Perestrelo, R. (2024). Grape Pomace as a Renewable Natural Biosource of Value-Added Compounds with Potential Food Industrial Applications. Beverages, 10(2), 45. https://doi.org/10.3390/beverages10020045