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Abstract: Cancer remains the second most common cause of death after cardiovascular diseases,
accounting for nearly 10 million deaths in 2020. Although the incidence of cancer increases consider-
ably with age, the cancer burden can also be reduced and have a high chance of cure through early
detection, appropriate treatment, and care of patients. The development of high-throughput analyt-
ical approaches, like matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS), contributes to identifying a pool of proteins/peptides as putative biomarkers for
the early detection, diagnosis, and tumor progression. The purpose of the current review is to present
an updated outline of recent proteome/peptidome research to establish putative cancer biomarkers
using MALDI-TOF MS and highlight the applicability of statistical analysis in the oncology field.
The pros and cons of MALDI-TOF MS application on cancer diagnostics and monitoring will be
discussed, as well as compared with tandem mass spectrometry (MS/MS)-based proteomics (e.g.,
liquid chromatography–tandem mass spectrometry). In addition, pre-analytical (e.g., sample quality
control) and analytical (e.g., sample pre-treatment, instrumental analytical conditions) properties that
influence the robustness of MALDI-TOF MS data will be also discussed.

Keywords: cancer; proteome/peptidome; MALDI-TOF MS; sample pre-treatment; statistical tool;
biomarkers

1. Introduction

Cancer is one of the major public health concerns worldwide, representing a major
life-threatening disease responsible for millions of deaths every year. It is characterized by
a huge class of diverse diseases that can influence any part of the body, usually sites such
as the breast, lung, colon and rectum, prostate, liver, skin, and stomach. In other words,
cancer comprises a big class of related diseases that can start in almost any organ or tissue
of the body when cells produce new cells, and the old or abnormal ones do not die when
they should. As these abnormal cells grow out of control, they can crowd out normal cells
and spread into surrounding tissues to invade adjoining parts of the body and/or extend
to other organs [1].

According to the American Cancer Society [2], approximately 1,918,030 new cases
and 609,360 deaths were observed in the United States in 2022, with the most dominant
kinds being lung, prostate, and colorectum cancer in men, and lung, breast, and colorectum
cancer in women. In recent years, cancer incidence and mortality have increased, partly
this is due to the coronavirus disease 2019 pandemic (COVID-19), which restricted access
to care and, consequently, has adversely affected cancer detection and therapy [3].
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Even though there are diagnostic and screening tools available for the most varied
types of cancer, which help the detection of the disease and subsequent improvement
in survival rates, certain limitations persist in the fight against cancer. Several studies
have emerged and have focused on changes in genes, their transcripts, proteins, and lipid
products involved in the most important cellular processes. Among omics approaches,
Figure 1, proteomics tandem with the progress in mass spectrometry (MS), has been
gaining increasing curiosity as it can help or monitor the disease to improve diagnosis
and prognosis through more efficient treatments, combined with its high sensitivity and
specificity [4]. Therefore, due to its continuous and high increase, there is a need to
research multidisciplinary approaches in different areas, as well as investigate new clinical
diagnostic tests to enhance the effectiveness of therapies and improve survival rates.
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Because of the variability in clinical behavior, treatment choices, and therapeutic
responses, researchers are constantly working to investigate new potential biomarkers
that are useful for studying diseases, identifying patients at different clinical stages, and
developing adaptive therapies [5,6]. Thus, a considerable advancement in proteomic is the
quantification of biomarkers, with high sensitivity and specificity provided by new and
powerful platforms, from biological fluids (e.g., urine, blood, seminal fluid, saliva) and
tissues [7]; with the objective of favoring not only physicians in clinical decision-making
but also the patient, to promote early diagnosis and treatment follow-up [8]. It is presently
considered that, in contrast to the genome, the proteome itself shows a more dynamic
state of the cell [9] due to complex regulatory systems that control the levels of protein
expression.

Proteomic is one of the many important core technologies in the current approaches to
post-genomic systems biology that has constantly improved in several areas of research,
with an emphasis on microbiology, food sciences, cancer, plant sciences, marine sciences,
and immunology [10], to understand the molecular mechanisms underlying normal and
disease states and identifying critical diagnostic and prognostic biomarkers [11]. This field
consists of a wide range of significant methodologies, which have been largely driven by the
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modern development of involved technology [12], whose objective is the characterization
of proteomes, including expressions, structures, functions, isoforms, molecular interactions,
and post-translational modifications (PTMs) [13]. Hence, proteomic is essential to under-
standing the complexity of the host–pathogen interaction process. Numerous tools have
been used to enhance and develop the latest protein analysis techniques to open up novel
opportunities in fields beyond protein science, with an emphasis on the fields of polymer
and biopharmaceutical research [11].

Over the last decades, matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry (MALDI-TOF MS) has become a popular and versatile analytical approach
to establish potential cancer biomarkers, even at low concentration levels. This analytical
approach has an interesting potential as a clinical tool since it is easy to use, cost-effective,
and fast in terms of analysis time [14]. This analytical approach consists of a soft ionization
process by means of a laser that reaches the analyte mixed with a solution of a matrix in an
organic solvent [e.g., α-cyano-4-hydroxycinnamic acid (HCCA), 2,5-dihydroxybenzoic acid
(DHB), 3,5-dimethoxy-4-hydroxycinnamic acid (SA)] able to absorb energy in the form of
UV light. The mixture is first deposited onto a sample plate known as a target, in which
the solvent then evaporates, and the sample is co-crystallized. After a bombardment by a
pulsed laser beam (UV or infrared radiation), the matrix molecules that are energetically
ablated from the surface of the sample transfer protons to the analyte, resulting in the
formation of intact gas-phase molecular ions (which usually carry a single positive charge),
Figure 2. After the ionization process, the masses can be analyzed by TOF MS, which
accelerates the gas-phase ions in a high-voltage electric field, which transmits a constant
amount of kinetic energy that will cause the smallest of the ions to travel the fastest and,
consequently, become separated by mass (the heavier the ions, the longer the time of
detection). The TOF reflector mode analyzer reflection mode provides a greater resolution
because it is equipped with a longer flight path, ion mirrors, and electric fields that refocus
ions by their masses [15].
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The purpose of the current review is to provide an updated outline of recent proteomic
research to establish potential cancer biomarkers using MALDI-TOF MS and highlight the
applicability of statistical analysis in the oncology field. The pros and cons of MALDI-TOF
MS application on cancer diagnostics and monitoring will be discussed and compared
with tandem mass spectrometry (MS/MS)-based proteomics (e.g., liquid chromatography–
tandem mass spectrometry). In addition, pre-analytical (e.g., sample quality control) and
analytical (e.g., sample pre-treatment, instrumental analytical conditions) properties will
be discussed to improve the robustness of MALDI-TOF MS data and a developed high-
throughput protocol.

2. MALDI-TOF MS Proteome/Peptidome Profile

MALDI-TOF MS is an unconventional technology for investigating protein profiles in
clinical samples. Numerous studies have reported that protein profiling is of impressive
significance in the diagnosis of distinct types of cancer [16–25]. An overall workflow
involves a sample preparation followed by MALDI-TOF MS acquisition, preprocessing,
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and statistical analysis of the data, Figure 3. The critical steps in the establishment of
potential cancer biomarkers mentioned previously will be discussed in the following
subsection.
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2.1. Sampling and Sample Preparation Approaches in MALDI-TOF MS Analysis

Sampling represents one of the most crucial steps in analytical analysis to obtain correct
data. In this sense, an unsuitable sampling process results in an irreversible impairment
that cannot be resolved through quality assurance assays. The contamination during
sampling represents the main source of acquiring invalid data. For this fact, it is crucial
to establish beforehand the most suitable method to collect the sample, the amount of
sample required, and identify any critical issues in the sampling step to minimize sampling
errors. In addition, the sample should be submitted to sample preparation to guarantee the
quality previous to performing the analytical analysis since the direct analysis can have
low sensitivity, accuracy, and reproducibility due to interferences of a sample matrix. It
is possible that sample preparation represents 60% of the time spent during an analytical
assessment; it is an important step to acquire high-quality analytical results with high
selectivity, accuracy, reproducibility, and low limit of detection and quantification since it
includes steps like fractionation, isolation, and enrichment of the target analytes. Moreover,
the selective isolation of the target analytes and the elimination of interfering sample
components are important to reduce the matrix effect, as well as protect the analytical
instrument from potential damages [26,27].



Separations 2023, 10, 453 5 of 33

2.2. Sample Pre-Treatment Procedures

The biological fluids (e.g., blood, urine, tissues) are complex samples in terms of pro-
teome/peptidome profile, and it is necessary that the applied simple, fast, and cost-effective
sample preparation procedures reduce the samples’ complexity, consequently increasing
the detection of low-abundant proteins [28]. Regarding Table 1, some studies performed
in the proteomic field include ultrafiltration, dialysis with subsequent lyophilization, and
precipitation by organic solvents [21,25,29,30].

Table 1. MALDI-TOF MS applications in cancer diagnosis.

Pathology/Sample Extraction Procedure Matrix Main Conclusions References

Bladder cancer

Plasma proteome 2D-DIGE HCCA

3 14 proteins with significantly
changes were identified
between the bladder cancer
and HCs

3 Gelsolin, inversin, and Apo
A1 presented great potential
as biomarkers for bladder
cancer progression

[20]

Plasma proteome SDS-PAGE HCCA

3 Nine differently expressed
glycoproteins were chosen as
possible markers for bladder
cancer.

3 Vitamin D-binding protein,
haptoglobin, transferrin,
fibrinogen, IgM, and
alpha-2-macroglobulin
markers were associated
with bladder cancer

[31]

Serum peptidome MB-WCX HCCA

3 Five peptides (m/z 3525.45,
4281.66, 4963.10, 5804.12,
and 5903.43) were used to
develop a diagnostic model

3 The sensitivity and
specificity of the five-peptide
model were 93.75% and
96.77%, respectively, while
the AUC value was 0.923.

[32]

Urine glycoproteome MNP@lectins -

3 63 glycoproteins were
exclusively identified in
cancer samples

3 Orthogonal validation by
slot-blotting revealed
high-grade patients had
elevated urine CD44 levels,
which became more
prominent after muscle
invasion and mimicked the
underlying tumor

[33]
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Table 1. Cont.

Pathology/Sample Extraction Procedure Matrix Main Conclusions References

Breast cancer (BC)

Plasma peptidome MB-HIC8 HCCA

3 33 peaks were significantly
different (p < 0.05) among the
studied groups

3 22 peaks were up-regulated in
BC patients

3 Three peptides (m/z 1570.31,
1897.4, and 2568.17)
distinguish BC patients from
HCs with 96.4% accuracy

[34]

Serum proteome 2-DE HCCA

3 42 proteins differentially
expressed in all BC patients

3 Six main pathways were
identified in BC, namely,
angiogenesis, CCKR, RAS,
gonadotropin-releasing
hormone receptor, and EGFR

3 ARPC4, MP2K4ENC1, and
MMP27 were detected only in
BC patients

[9]

Blood and serum
N-glycans SPE DHB

3 Potential biomarkers for
differentiating BC from HCs
included one complex/hybrid
glycan (m/z 1444.499) and four
hybrid glycan members (m/z
1460.495, 1606.558, 1622.550,
and 1768.610).

[35]

Urine
proteome/peptidome SDS-PAGE SA

3 Four peptide ion biosignatures
(m/z 1046.5, 1062.5, 1237.7,
and 1727.9) permitted the
distinguish between BC from
HCs, with greatest sensitivity
(88%) and specificity (98%)

[36]

Cervical cancer (CC)

Cell lines proteome 2DE -

3 67 proteins were identified,
differentially expressed (fold
change > 2) in cancer cell lines
versus normal cells (HCK1T)

3 NRF2 was identified as a
valuable transcription
regulator of secreted proteins

[37]

Cell lines proteome 2D-DIGE HCCA

3 68 proteins that were
expressed differently in HeLa
and HeLa-I5 cells were found.

3 PGRMC1 was discovered to be
more highly expressed in
invasive HeLa-I5 cells than in
HeLa cells.

[38]
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Table 1. Cont.

Pathology/Sample Extraction Procedure Matrix Main Conclusions References

Serum proteome MB-WCX HCCA

3 Three peptide biomarkers
distinguished CC patients
from HCs, and distinguished
pre-operative from
post-operative CC patients

3 TKT and FGA are serum
biomarkers for surgical
diagnosis of CC

[39]

Colorectal cancer (CRC)

Serum IgG N-glycome
MiniChromTM
Pre-packed Columns
with Eshmuno®

DHB

3 The CRC progression were
probably correlated with five
IgG N-glycans

3 When CRC developed, the
degrees of core-fucosylation,
sialylation, sialo
core-fucosylation, and
bisecting GlcNAcylation
varied dramatically.

[40]

Serum proteome MB-WCX HCCA

3 Seven biomarkers were
capable to distinguish CRC
from HCs with a specificity of
99% and sensitivity of 98%

3 Serine/threonine kinase 4 was
identified to be a s a putative
biomarker for early detection,
prognosis, and prediction of
distant metastasis of CRC

[41]

Serum proteome MB-WCX HCCA

3 Five peaks (2202, 5821, 3260,
2480, and 2218) displayed
differential expression in
advanced colorectal adenoma
patients

3 KNG1 was identified as a
putative biomarker for
colorectal adenoma

[42]

Tissue proteome 2D-DIGE HCCA

3 55 proteins with differential
expression were found.

3 Expression of HLAB, protein
14-3-3β, LTBP3, ADAMTS2,
JAG2, and NME2 on tumor
cells was expressively
correlated with progression,
invasion, and metastasis

[19]

Tissue proteome 2D-DIGE,
µZip-TipC18 HCCA

3 TAGL was discovered for the
first time with four distinct
protein species, collectively
down-regulated in colon
cancer tissues, and emerged as
the leading biomarker for CRC

[43]
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Table 1. Cont.

Pathology/Sample Extraction Procedure Matrix Main Conclusions References

Gastric cancer (GC)

Gastric cell lines
proteome 2-DE HCCA

3 A total of 39 (MKN28) and 13
(AGS) proteins were identified

3 AGS and MKN28 cells’ cell
viability was reduced by PEC.

[44]

Serum peptidome MB-IMAC-Cu HCCA

3 107 peptides were detected, 12
of which were differentially
expressed among the group’s
under studies

3 Potential serum biomarkers for
GC include FGA, AHSG, and
APOA-I

[45]

Serum glycoproteome HILIC SPE DHB

3 Differences in glycosylation
were found between HCs and
GC group

3 Several unique N-glycan
structures, especially the
peritoneal metastasis, are used
to monitor the development of
GC.

3 Core fucose (AUC = 0.923)
could be used as GC
biomarker

[46]

Liver cancer

Salivary N-glycome SPE–C18 DHB

3 40, 47, 29, and 33 N-glycan
peaks were identified and
marked from HCs, HB, HC,
and HCC groups, respectively

3 3 N-glycan peaks (m/z
2240.830, 2507.914, and
3931.338) were only detected
in HCC group

[47]

Serum proteome
Samples diluted with
H2O and direct
application

HCCA

3 The optimized serum
preparation protocol provided
high reproducibility

3 PLS-DA displayed a
statistically significant
differentiation between liver
cancer patients and HCs

[48]

Serum proteome MB-WCX -

3 81 protein peaks were checked,
and 27 protein peaks had
significant difference (p < 0.05),
of which 17 were up-regulated,
10 were down-regulated

3 Blind test showed that good
sensitivity and specificity of
the protein peaks

[49]
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Table 1. Cont.

Pathology/Sample Extraction Procedure Matrix Main Conclusions References

Serum proteome MB-WCX HCCA

3 In serum mass spectra, a total
of 27 discriminant peaks (p <
0.05) were discovered

3 The blinded validation test
had accuracy rates of 78% for
GA, 84% for SNN, and 84% for
QC

[50]

Serum proteome Direct application -

3 The test’s sensitivity and
specificity for detecting HCC
were both above 80%,
particularly when used to the
independent validation set
with blinded validation

[51]

Lung cancer

Cell lines proteome 2D-DIGE HCCA

3 Five differently expressed
proteins were found, but none
of them offered promise as a
biomarker to distinguish Clara
cells from type II alveolar
epithelial cells, which are the
precursors of lung cancer

[52]

Cell lines proteome Ultracentrifugation DHB, SA

3 RPS27A (ribosomal protein)
was identified as marker of
disease progression

3 100A10_S100 calcium-binding
protein A10 a known tumor
diagnosis marker was also
identified

[25]

Plasma proteome 2D-SDS-PAGE HCCA

3 Patients were found to have
elevated levels of haptoglobin,
retinol binding protein 4,
alpha-1 antitrypsin, Ig lambda
2 chain C region, Ig alpha 1
chain C region, clusterin, and
transthyretin

[53]

Pleural effusion (PE)
and malignant pleural
effusion (MPE)
peptidome profile

MB-WCX HCCA

3 Five peptide peaks (m/z
917.37, 4469.39, 1466.5, 4585.21,
and 3216.87) were chosen to
discriminate MPE and TPE

3 The classification’s sensitivity,
specificity, and accuracy were
93.75%, 100%, and 96.15%,
respectively.

[23]
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Table 1. Cont.

Pathology/Sample Extraction Procedure Matrix Main Conclusions References

Serum proteome MB-WCX HCCA

3 Five peptide peaks (m/z
1021.55, 1467.31, 8944.33,
3139.18, and 4137.6) exhibited
the best efficiency in
separating SCLC patients from
HCs, with a recognition
capability of 98.96% and a
cross-validation capability of
95.84%

[24]

Serum peptidome MB-WCX HCCA

3 Five differential peaks were
up-regulated in the case group
and displayed a tendency to
return to HCs values after
surgery

3 Among the three models
constructed, the GA model
had the best diagnostic efficacy

[54]

Serum and urine
peptidome SPE-MBs HCCA

3 In serum, 19 peptides had
substantially different
expression (p < 0.0005; AUC ≥
0.80), whereas 8 peptides were
present in urine.

3 Fibrinogen α,
glucose-6-phosphate
isomerase and
cyclin-dependent kinase-1
were statistical differential
peptides in both matrices

[55]

Ovarian cancer (OC)

Plasma proteome MagSi-Proteomics C8
beads HCCA

3 21 peaks distinguish between
epithelial OC patients and
HCs

3 5-peak profile could
distinguish epithelial OC from
benign ovarian masses

3 20-peak profile could
differentiate between early
and late stages of the OC

[16]

Serum proteome ZipTip C18 with
ACN and 0.1% TFA HCCA

3 Our distinct serum proteins
were shown to be crucial for
the growth of OCs

3 The SNN method produced a
discriminative model with
strong external validation
sensitivity (71%) and
specificity (68.6%)

[17]



Separations 2023, 10, 453 11 of 33

Table 1. Cont.

Pathology/Sample Extraction Procedure Matrix Main Conclusions References

Serum proteome
Samples diluted with
H2O (1:80 v/v) and
direct application

SA

3 For each stage of OC, distinct
mass spectral patterns made
up of 9–20 key combinations
were found.

3 Using all algorithms scored
simultaneously, all phases of
OC could be identified with
99% sensitivity and 92%
specificity

[56]

Prostate cancer (PCa)

Tissue proteome Direct DHB

3 Carnitine and acetylcarnitine
were significantly
up-regulated in cancer
compared to non-cancer
epithelium

3 Significant metabolic
alterations in key molecular
processes were identified

[57]

Serum
proteome/peptidome HICNPs HCCA

3 With an analytical accuracy of
77%, PCA and PLS-DA of the
samples showed a
considerable difference in the
MALDI-TOF signals between
PCa and HCs, approaching
those of techniques based on
prostate-specific antigen

[58]

Urine and serum
peptidome

ACN and
re-suspension in 0.1%
TFA

HCCA

3 The ratio of two mRNAs
(PCA3/PSA) emitted into the
urine after DRE, appears to be
suitable in predicting the
diagnosis of PCa

3 Complement C4-A was
matched with m/z 1739.9 and
1896.0

[22]

Urine proteome 2DE -

3 30 overexpressed protein
locations were found,
including FTL and FTH1

3 FTH and FTL are essential for
PCa cell migration, apoptosis,
and proliferation

[59]

Other cancers

Cell lines proteome
Centrifugation (75%
ethanol, 70% formic
acid, 100% ACN)

HCCA

3 The glioblastoma cell lines
were well-discriminated using
MALDI-TOF MS profiling

3 MALDI-TOF MS could be
used in complement to
histological tumor
classification

[29]
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Table 1. Cont.

Pathology/Sample Extraction Procedure Matrix Main Conclusions References

Cell lines proteome
Centrifugation (75%
ethanol, 70% formic
acid, 100% ACN)

HCCA

3 A stronger connection
between the HepG2 and
MDA-MB-231 cell lines

3 The cell lines were categorized
based on their ability to
metastasize, providing the
opportunity to distinguish
non-invasive from invasive
cells

[21]

Plasma exosomes
SSEC (consisting of
Mini-SEC and
HPL-SEC)

HCCA

3 In the independent test set, the
improved model (Exo-ANN)
successfully separates various
cancer kinds.

3 According to the one versus
rest classifier, the values of
AUC were 0.84, 0.73, 0.81, and
0.88 for LR, DT, KNN, and
SVM, respectively.

[60]

Urine proteome ZipTip C18 HCCA

3 Uromodulin (two peptides:
m/z 1682.34 and 1913.54) and
complement C4A (m/z
1895.43) were found to be the
factors that discriminated
between GTN and HCs

[61]

Salivary proteome Centrifugation HCCA

3 Two peaks (m/z 5174.2 and
10,823.7) allowed the
discrimination the diseased
state

3 This study’s classification
method makes it possible to
distinguish between salivary
samples from subjects with
TMDs and HCs

[30]

Serum peptidome MB-WCX -

3 α-Fibrinogen,
dihydropyrimidinase-like 2,
α-fetoprotein, and platelet
factor 4 should be considered a
putative biomarkers of MM

3 PF4 is reduced in newly
identified MM patients

[18]

Abbreviations: 2D-DIGE—two-dimensional difference gel electrophoresis; 2-DE—two-dimensional gel elec-
trophoresis; ACN—acetonitrile; DHB—2,5-dihydroxybenzoic acid; GTN—gestational trophoblastic disease;
HCCA—α-cyano-4-hydroxycinnamic acid; HCs—healthy controls; HICNPs—hydrophilic interaction chro-
matography nanoparticles; MB-HIC8—hydrophobic interaction chromatography magnetic beads; MB-IMAC-
Cu—magnetic beads-based immobilized metal-ion affinity chromatography; MB-WCX—weak cation ex-
change magnetic beads; MM—multiple myeloma; NH4HCO3—ammonium bicarbonate; SA—3,5-dimethoxy-
4-hydroxycinnamic acid; SSEC—sequential size-exclusion chromatography; TFA—trifluoroacetic acid; TMDs—
temporomandibular joint disorders; (-)—information not available.

Those sample pre-treatment procedures offer high-quality biological fluid proteome/
peptidome profiles. Nonetheless, these procedures present several disadvantages, like
being laborious, high-cost consumable supplies, and requiring specialized equipment. In
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this sense, new sample pre-treatment procedures that are simple, robust, cost-effective, and
readily accessible could facilitate large-scale multicenter analyses that have been proposed
to establish the proteome/peptidome profile of biological fluids. The most common sample
pre-treatment procedures used in proteome/peptidome MS are solid-phase extraction
(SPE), magnetic beads (MBs), immunoaffinity chromatography (IAC), and glycoproteome
and phosphoproteome enrichment, Figure 4.
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2.2.1. Ultrafiltration

Ultrafiltration has been extensively used to remove salts and concentrate protein
fractions. The main disadvantage of this sample pre-treatment procedure is the electrostatic
interaction of the filtering membrane that can act as a barrier for protein diffusion. This
fact can be supported by protein–protein interaction since proteins with a low MW (e.g.,
albumina) or proteins with non-globular tertiary structure may interfere with the diffusion
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of other proteoforms [14]. However, Chernokalskaya et al. [62] demonstrated that the
ultrafiltration procedure can also be applied to prepare larger proteins (>10 kDa) from
biological fluids for electrophoresis and, at the same time, separate low-molecular-weight
(<10 kDa) polypeptides for MS analysis.

2.2.2. Solid-Phase Extraction

Solid-phase extraction (SPE) is an extraction procedure that isolates specific subsets of
molecules (subproteomes) to decrease the complexity of the sample by excluding large-size
proteins and to concentrate the retained subproteomes from femtomoles to picomoles [14,17,63].

Gobom et al. [64] introduced the micro-SPE (µ-SPE), which has become a simple, fast,
cost-effective, hardly time-consuming, and versatile sample pre-treatment procedure for
clinical proteome analysis. The main outcome of µ-SPE compared to SPE is the low volume
of sorbents, samples, and solvents required. Of these sorbents, commercially available,
reverse phase with narrow pipette tips, packaged with hydrocarbon chains (C4, C8, C18)
are most commonly used for the isolation and/or fractionation of proteins and peptides,
whereas the ion-exchange sorbents were less used. Protein separation was usually per-
formed using C4 and C8 hydrocarbon chains, whereas the separation of small peptides was
performed using C18 hydrocarbon chains. Recently, Xing et al. [65] reviewed the selective
enrichment of low-abundance proteins using the combination of molecularly imprinted
polymer (MIPs)-based affinity extraction and MS for targeted proteome analysis. MIPs,
also called artificial antibodies, are chemically synthesized receptors formed through the
polymerization of functional monomer(s) and a cross-linker around a molecular template.
MIPs are more stable than antibodies, cost-effective, easy to prepare, and resistant to a wide
range of pH, solvents, and temperatures [65–67]. MIP-SPE has been extensively used in
cancer biomarkers detection with excellent efficiency [68–71].

There is a diversity of SPE tips commercially available with diverse functionalities for
desalting and concentration of proteins/peptides before MALDI-TOF MS, namely, Eppen-
dorf Perfect Pure Tips (Eppendorf), NuTips (Glygen), Stage-Tips (Proxeon), Vivapure Micro
spin columns (m-SPE) (Sartorius), ZipTips (Millipore), and OMIX (Agilent). Nonetheless,
there are contradictory ideas in the connected literature around the effectiveness of the
extraction properties of SPE pipette tips in MS analyses [72].

2.2.3. Magnetic Beads

The introduction of MBs with several functional units able to bind proteins/peptides
represents an important step in the clinical field. This sample pre-treatment utilizes various
chemical chromatographic surfaces on an outer layer of MBs to selectively purify specific
subgroups of proteins/peptides, consequently permitting unbound impurities to be elim-
inated by washing with buffers. On the other hand, proteins bound to the MBs are then
eluted, diluted, and directly analyzed by MALDI-TOF MS [73]. MBs have high surface
areas per unit volume, excellent stability, and enable fast kinetic processes involving solu-
tion species compared to bulk solid surfaces [14,17]. From the sets of MBs, commercially
available weak ion exchanges (WCX, WAX) were the most used in the establishment of
cancer biomarkers, as can be observed in Table 1 [41,42]. Villanueva et al. [74] compared the
extraction efficiency of C1-, C2-, C3-, C8-, and C18-derivatized hydrophobic particles to es-
tablish the peptidome profile using the following criterion: total number of peaks combined
from the low-range and high-range MALDI-TOF mass readouts. C8 beads yielded the most
peaks, but higher polypeptides were especially captured on less hydrophobic (C1–3) and
small peptides in more hydrophobic (C18) media. In addition, the efficiency of MB-WCX,
MB-HIC C8, and MB-IMAC Cu beads was compared in the establishment of a peptidome
profile of a non-pathological human cerebrospinal fluid (CSF) [75]. The results showed that
an increase in albumin or immunoglobulin concentration meaningfully affected the CSF
preparation made with MB-HIC C8 beads, leading to a suppression of signal intensities,
whereas preparations with MB-IMAC Cu or MB-WCX beads were not affected. Gode and
collaborators [76] proposed a direct application of the MBs to the MALDI plate without
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prior compound elution, and the results demonstrated that bead-bound analyte evidenced
exceptional and reproducible ionization yields.

2.2.4. Immunoaffinity Chromatography

Immunoaffinity chromatography (IAC) is a kind of liquid chromatography (LC) in
which the stationary phase is comprised of an antibody or antibody-related reagent. This
sample pre-treatment procedure denotes a particular subsection of affinity chromatography
in which a biologically linked binding agent is applied for the selective purification or
study of a target analyte [77]. The complexity of biofluids, mainly the blood proteome,
can be reduced using the commercially available kits, like as ProteoPrep 20 Plasma Im-
munodepletion Kit, Seppro IgY14 system, SuperMix, Multiple Affinity Removal system,
and Qproteome [28]. Sharma et al. [78] developed an immunoaffinity-based method for
melanoma-derived exosomes (MTEX) captured from the plasma of melanoma patients.
Utilizing a monoclonal antibody (mAb) 763.74 specifically for the chondroitin sulfate proteo-
glycan 4 (CSPG4) epitope distinctively expressed in melanoma cells, these authors separated
MTEX from non-tumor cell-derived exosomes and assessed the proteins of both fractions by
quantitative flow cytometry. Nicol and coworkers [79] developed an immunoaffinity-MS-
based method for quantifying protein biomarkers from the serum of lung cancer patients,
and the concentration of carcinoembryonic antigen (tumor biomarker) is higher in individ-
uals with lung cancer. Recently, immunoaffinity combined with MALDI-TOF MS has been
explored as a powerful tool for quantitative biomarkers analysis. Choi et al. [80] identified
possible EV biomarkers for lung cancer by analyzing particular components inside serum-
derived extracellular vesicles (EVs) using polyethylene glycol (PEG)-based precipitation,
immunoaffinity separation utilizing antibodies against CD9, CD63, CD81, and EpCAM,
combined with MALDI-TOF MS. Due to CD5L expression being correlated with cancer
origin and exemplifying a central regulatory protein with respect to activities connected to
lung cancer, the findings obtained suggest that CD5L can be employed as an EV biomarker
for liquid biopsy. Hsiao et al. [81] elaborated on a workflow involving dry saliva spot
sampling and immunoenrichment-coupled MALDI-TOF MS (immuno-MALDI) to quantify
salivary metalloproteinase-1 (MMP1), one of the most promising salivary biomarkers for
oral squamous cell carcinoma (OSCC) detection. A high concentration of MMP1 (from 5.95
to 242.5 ng/mL) was detected in 7 of 9 OSCCs, whereas MMP1 was not detected in the
samples collected from healthy controls (HCs). Nevertheless, immunoaffinity capturing
presents some limitations since the generation of high-quality antibodies is expensive, time-
consuming, and still unreasonable sometimes. Moreover, the stability and reproducibility
of antibodies are, every so often, problematic [65].

2.2.5. Glycoproteome and Phosphoproteome Enrichment

Post-translational modifications (PTMs), such as glycosylation or phosphorylation, are
essential to recognize the activities of multilayered cellular protein networks. Numerous
diseases, as well as cancer, are recognized to obtain the abnormal activation of kinase
signaling pathways that reveal substantial differences in the dynamic regulation of protein
phosphorylation and denote an effective source of information [82–84]. Lectins, titanium
dioxide, graphitized carbon, and zwitterionic hydrophilic interaction chromatography
(ZIC-HILIC) were used to enrich the glycopeptide, with ZIC-HILIC being reported as
the most effective [85]. The main drawback of ZIC-HILIC results from favoring the N-
linked glycans over the less hydrophilic O-linked glycans. To overcome this drawback,
carbohydrate fractions are primarily deglycosylated from proteins through an enzymatic
reaction followed by a purification step using SPE [28].

Metabolic labeling with phosphospecific antibodies, radioactive phosphate, and/or
in vitro kinase assays were the traditional procedures used in the protein phosphoryla-
tion profile. Nevertheless, these procedures presented several disadvantages like being
laborious, slow, and frequently requiring a previous understanding of the sites under
study [83]. In this sense, the MALDI-based approach appeared as a suitable tool for the
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analysis of phosphopeptides, providing qualitative and quantitative analyses to identify
and profile the abundance of thousands of phosphopeptides in a single experiment using
microgram amounts of sample [83]. However, this approach requires a proper sample
pre-treatment procedure to improve the enrichment and increase their detection by MS.
The sample pre-treatment includes protein digest since it simplifies the solubilization and
offers an effective depletion of non-phosphorylated peptides [28]. In phosphoproteomics,
research has used several purification approaches, such as immunoaffinity procedures,
IMAC with multivalent cations (e.g., Fe3+, Ga3+), metal oxide affinity chromatography
(MOAC) with TiO2, ZrO2, or Nb2O5, and covalent modification [83,84]. Ruprechet et al. [86]
compared MALDI-TOF MS/MS and nano-electrospray ionization (nESI) orbitrap instru-
ments regarding their capacity to identify phosphopeptides enriched from tryptic digests
of cell lines using Fe-IMAC column chromatography. The results showed that MALDI-TOF
MS/MS identified an unexpectedly high number and percentage of phosphotyrosine sites
(~20% of all sites), maybe as a direct result of more efficient ionization. Tsai et al. [87]
used a Ga3+-Fe3+-IMAC approach for the sequential purification of phosphopeptides with
diverse properties. Using Raji B cells, the sequential Ga3+-Fe3+-IMAC demonstrated a
better detection sensitivity in comparison to the use of a single IMAC (Fe3+, Ti4+, Ga3+,
Al3+). A sequential Ga3+-Fe3+-IMAC analysis of human lung cancer tissue produced
2560 distinct phosphopeptides with just 8% overlap. The in vivo phosphorylation net-
work’s complementary identification of kinase substrates and their phosphorylation sites
was made possible by the minimal overlapping enrichment, marking an impressive step to-
ward the thorough mapping of the signaling pathways implicated in lung cancer [87]. Jiang
and collaborators [88] evaluated the performance of Fe3O4@PDA microspheres coated with
metal ions on the phosphopeptides enrichment, and based on the findings, different metal
ions have varying degrees of selectivity, sensitivity, and capacity to enrich phosphopeptides
from the samples under study, with Fe3O4@PDA-Nb5+ and Fe3O4@PDA-Ti4+ being the
most effective.

2.3. MALDI Target Preparation

MALDI-TOF MS has been used in several analytical fields despite some limitations that
persist, namely, the variability of signal intensities, resolution among different spots of the
same sample, and the fact that the mechanisms of ion formation and desorption are weakly
understood [28,89,90]. For these reasons, the direct MALDI-TOF MS analysis is avoided
in proteome/peptidome research using complex biological samples since the competition
between the co-existing components for desorption and/or ionization processes is well-
known as an analyte suppression effect (ASE) [28]. Abundant proteins (e.g., albumin in
serum or plasma) usually interfere with the proteome/peptidome analysis. Moreover,
lipids, carbohydrates, and salts present in biological fluid results provide an increase in the
suppression effects, reducing the ionization efficiency of proteins/peptides [91].

Furthermore, the low reproducibility of the analyte peak intensity can be affected by
matrix amount and inhomogeneous crystallization. The analytes are protected from laser
segregation by the homogeneous dispersion of the tiny crystal surface. The effective species–
matrix ratios in the crystal may be enhanced, resulting in a reduction of the suppression
effect [92]. To overcome inhomogeneous crystallization, several efforts have been per-
formed, such as the application of ionic liquids (ILs) equimolar mixtures of typical MALDI
matrixes (e.g., HCCA, SA) combined with organic bases (e.g., pyridine, tributylamine) to
improve spot homogeneity [93], the design of new matrices capable of generating a small
number of interfering backgrounds [94], the use strong base matrices as proton sponges [95],
or an electron transfer matrix [96] to improve the ionization of nonpolar target analytes [89].
In addition, other alternative approaches in proteomic MALDI-TOF MS research have
been developed to improve the sensitivity, resolution, and reproducibility, namely, the
application of HCCA and SA, either in dried-droplet and/or surface preparation mode.
Nevertheless, the main disadvantage of HCCA is denoted by its evident inclination for
effectively basic arginine-containing peptides and the consequent suppression of acidic pep-
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tides, restricting the identification of low-abundance proteins [89]. In this sense, a rationally
invented chloro-cinnamic derivative of HCCA, namely, α-cyano-5-phenyl-2,4-pentadienic
acid (CPPA), was developed to overcome this problem, demonstrating the effectiveness
of CPPA in the analysis of intact protein by MALDI-TOF MS in complex samples [89].
Moreover, o-alkylates dihydroxybenzoic acid (ADHB) was used as a matrix additive to
HCCA to improve the sensitivity of hydrophobic peptides from 10- to 100-fold [97].

2.4. Statistical Analysis

As stated previously, MALDI-TOF MS is one of the most valuable analytical ap-
proaches in the research of proteome/peptidome due to its resolution and high speed
in the detection of proteins/peptides putative biomarkers in complex biological fluids
(e.g., plasma, urine, saliva, serum). Raw data produced by MALDI-TOF MS are typically
composed of large spectra sets since each single spectrum comprises thousands of measure-
ments entailing m/z signals and intensities [98]. To give clinical professionals a dynamic
view of the data quality, effective visualization of huge datasets obtained from patient co-
horts is crucial. Thus, statistical tools and pattern matching algorithms (e.g., quick classifier
(QC), genetic algorithm (GA), supervised neural network (SNN)) are crucial to validate
signal patterns that may be substantially differentially expressed between the patient and
HCs [99]. For this purpose, fast, user-friendly software for high-throughput data pre-
processing, flexibility in changing input variables, and statistical tools are required [100].
Usually, comprehensive data analysis in proteome/peptidome profiling includes the fol-
lowing subsequent steps: data import (mzXML, mzML, mzDATA), quality control, dataset
pre-treatment (normalization, transformation, smoothing, baseline estimation, aligning,
peak calculation), pre-processing (exploratory projection, variables selection), processing
(predictive models), validation (model verification), and post-processing (pathway anal-
ysis) [28]. The quality control can be performed manually or automatically through the
application of specific selecting filters. The data pre-treatment is carried out to decrease the
heteroscedasticity of the dataset and to improve the performance for downstream statistical
analysis. Additionally, the intensity is normalized and transformed to reduce systematic
variation and enhance performance for subsequent statistical analysis. According to Meule-
man et al. [101], the spectra normalization is a vital stage in pre-processing and that, despite
its ease, total ion current (TIC) is the greatest possibility in profile experiments, especially
to account for the effects between technical replicas, assuming that the overall number of
proteins in the sample is much lower than the number of proteins with variable expres-
sion [102]. Considering that the raw data are counts of ionized molecules with intensity
values that generally match the Poisson distribution [103], a square root transformation
can be applied to convert the Poisson distributed data to approximately normal data, with
regular variance independent of the mean, which is an important requirement for many
statistical tests [104]. The transformed spectral data are then smoothed to remove noise and
small- and high-frequency changes. For this determination, several filters are available for
data smoothing, including the Savitzky–Golay algorithm, which is based on polynomial
regressions in a moving window [105]. In MALDI-TOF MS profiling, the elevation of the
intensity values is called the baseline, which is caused by chemical noise that is mostly
derived from the matrix and its cluster-derived signals. Therefore, the statistics-sensitive
non-linear iterative peak-clipping algorithm (SNIP) algorithm, an interactive algorithm
that computes the baseline by considering the local minima and local mean intensities in
windows of increasing size, was used to remove these background effects to reduce their
influence in the quantification of the peak intensities. As the main purpose of MALDI-TOF
MS profiling is establishing a proteome/peptidome pattern of whole samples that allows
the discrimination of patients from HCs, instead of an identification of a singular pro-
tein/peptide. For this purpose, multivariate statistical tests presented several limitations,
being that multivariate analysis is preferably used in exploratory experiments to establish
proteins/peptides patterns distinguishing through the correlations between groups. The
most commonly used statistical and machine learning methods comprise analysis of vari-
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ance (ANOVA, for multiple group comparisons), principal component analysis (PCA), and
partial least square discriminant analysis (PLS-DA) because it is necessary to handle many
variables and visualize these datasets [106]. In exploratory analyses, PCA is an unsuper-
vised learning technique that employs complex mathematical principles to minimize the
dimensionality of enormous datasets without external interference from the user [107,108].
The interpretation, analysis, and processing are easier when using the reduced-dimension
dataset. PCA showed a projection of the dataset into a smaller dimensional subspace based
on the optimal orthogonal transformation [109], obtaining the directions of maximum
variance in high-dimensional data that are equal to the least squares line of greatest fit
over the plotted data and preserving most of the information in the data [108]. The PCA
approach provides the contribution of each principal component to the total variance and
the eigenvectors associated with non-zero eigenvalues of the coordinates [108]. For this fact,
an unsupervised approach is a better alternative for the initial visualization of the dataset,
subsequently permitting the discovery of the outliers and the determination of what are
the main influences assessed in the investigation [106]. As opposed to that, PLS-DA is a
supervised algorithm that merges variable extraction (dimension reduction) and discrimi-
nant analysis (prediction model construction) into one algorithm. Theoretically, PLS-DA
is a multivariate dimensionality reduction tool in which datasets of distinct groups are
mapped far apart. Using the non-linear iterative partial least squares (NIPALS) technique,
the transformation is easily calculated [110]. This supervised learning technique allows the
development of a predictive response model to categorize novel samples (e.g., diagnostic
tools), identify valuable variables (e.g., biomarkers), and/or investigate the mechanism
pathways (e.g., protein pathways) [109]. Then, the predictive model should be validated to
verify the performance in correctly predicting the hypothesized relations between variables
and response [109]. The cross-validation (CV) approach is the most utilized in the valida-
tion as it offers a qualitative and quantitative assessment of the model’s capacity to predict
novel independent samples without collecting extra data. CV is a conventional procedure
that splits the original dataset into a training set and a test set to assess the performance
of the predictive model [109]. K-Fold is the easiest method of making CV, which splits
the training data into k blocks using a random partition; more particularly, the K-CV
leave-one-out cross-validation (LOOCV) and the Monte Carlo cross-validation (MCCV),
the former being employed in small datasets [107]. Laputková et al. [30] used statistical
analysis and automated MALDI-TOF MS to establish a salivary proteome profile indicating
the state of temporomandibular joint disorders (TMDs). In this study, for the grouping
of MS from the model generation classes of diseased salivas and HCs, three mathemati-
cal algorithms were applied, namely, QC, GA, and SNN. The SNN algorithms provided
11 peptide ion signatures with a recognition capability of 97.2% and cross-validation of
84.3%. With an area under the curve (AUC) value of 0.866 and 0.853, respectively, the
diagnostic panel primarily contains two peaks at 5174.2 and 10,823.7 m/z, indicating great
accuracy in identifying the disease condition. The QC model produced the greatest results
in a research by Zaki et al. [111], with 100% identification capability and 96.4% cross-
validation accuracy. Three peptide ion signatures with m/z 1570.31, 1897.4, and 2568.17
were achieved as a proteome profile for a cross-validation set to discriminate the BC from
HCs. The AUCs ranged from 0.984 to 1, with a 95% confidence interval, which was revealed
to be strongly associated with sensitivity and specificity. Exo-ANN is an artificial neural
network-based multi-classifier that Zheng and collaborators [60] developed to simultane-
ously distinguish between BC, pancreatic cancer (PC), and high-grade carcinomas (HCs).
This study was motivated by the superior performance of machine learning algorithms to
identify spectrum signals. The training set’s three groups’ discrimination accuracy steadily
improves, reaching an accuracy score of 80.6%. Additionally, the three independent groups’
AUC values for BC, PC, and HCs were 0.89, 0.86, and 0.93, respectively, demonstrating
Exo-ANN’s reliable performance in the clinical diagnosis of various cancer types. There
are available several open-source (e.g., Mass-up, MetaboAnalyst, MALDIquant, ROCCET)
and commercial tools (e.g., ClinProTools, Markerview) specifically for MALDI profiling.
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These commercial tools are friendly and guarantee easy data transfer without requiring
data conversion since they are completely compatible with data formats produced by MS
platforms [28].

3. MALDI-TOF MS Applications in Cancer Diagnosis

Despite the adoption of multi-marker diagnostic techniques, it is still difficult to
diagnose diseases like cancer. Thus, innovative approaches based on new methods, such as
proteome/peptidome research, have been applied, namely, untargeted proteomics, such
as protein/peptide profiling, have appeared as attractive tools for clinical diagnostics. By
aiding the identification of new biomarkers, permitting tissue imaging, and measuring the
levels of existing biomarkers, MALDI-TOF MS holds the potential to modernize cancer
diagnostics. It is a fantastic analytical method for exploring proteins and peptides. MALDI-
TOF MS has been used to find cancer biomarkers in bladder, ovarian, lung, and breast
cancer, among other malignancies, as shown in Table 1.

3.1. Bladder Cancer

Bladder cancer has a high rate of morbidity and mortality and is the tenth most
prevalent cancer in the world [112]. Reappearance and disease progression to the muscle-
invasive phenotype are the primary problems encountered throughout the clinical therapy
of bladder cancer. Because of this, a successful outcome depends greatly on early diagnosis
and efficient, individualized treatment. Currently, the recommended methods for diagnos-
ing BC are cystoscopy and urine cytology [32]. Nedjadi et al. [20] used two-dimensional
difference gel electrophoresis (2D-DIGE) coupled with MALDI-TOF MS as a powerful
approach for the discovery of biomarker proteins connected to insistent forms of urothelial
bladder cancer. Nine plasma proteins are suggested as possible biomarkers by the find-
ings, including the serum amyloid P component, mesoderm development candidate-1,
plasma membrane calcium-transporting ATPase-1, plasminogen, gelsolin, inversin, and
apolipoprotein A1. Among them, apolipoprotein A1 (Apo A1) displayed elevated speci-
ficity and sensitivity (AUC = 0.906), and for this fact, could act as a possible biomarker for
bladder cancer progression, delivering a new perspective on this disease’s diagnosis. In
addition, Lemańska-Perek and collaborators [31] established the plasma proteome maps
from patients with urothelial bladder cancer using two-dimensional sodium dodecyl sulfate
polyacrylamide gel electrophoresis (2D SDS-PAGE) combined with MALDI-TOF MS. The
preliminary results suggest vitamin D-binding protein, haptoglobin, transferrin, fibrino-
gen, IgM, complement C3b, alpha-2-macroglobulin, and pigment epithelium-derived as
potential biomarkers associated with bladder cancer, Figure 5.
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On the other hand, Ding et al. [32] used a serum peptide model to predict bladder
cancer and verified that five peptides with m/z 3525.45, 4281.66, 4963.10, 5804.12, and
5903.43 could be used for diagnostic purposes. Additionally, in the training set, the AUC
value of the five-peptide model was 0.923, and the sensitivity and specificity were 93.75%
and 96.77%, respectively. Magnetic nanoprobes coated with three broad-spectrum lectins
(MNP@Lectins) were utilized by Azevedo et al. [33] to selectively collect glycoproteins
from the urine of patients with bladder cancer.

A total of 63 glycoproteins were found to only be present in cancer samples. The
bladder cancer stem cell marker CD44, which has been linked to a poor prognosis, is one of
these proteins.

3.2. Breast Cancer

The most common heterogeneous tumor among women globally is breast cancer (BC),
which has overtaken other cancers as the primary cause of mortality, with an expected
685,000 deaths in 2020 [1]. Even though there has been a decline in mortality, managing
BC patients clinically is still difficult, and better diagnostic, prognostic, and therapeutic
approaches are urgently needed. Zaki et al. [111] used plasma to establish the peptidome
patterns in BC, in which the main conclusions were that the 92 peaks varied among the
analyzed groups, and 33 peaks were significantly distinct (p < 0.05). From these, three
peptides (m/z 1570.31, 1897.40, and 1568.17) were delivered by the QC model to distinguish
the BC patients from HCs with 96.4% accuracy. On the other hand, Zografos et al. [9]
studied male BC and identified four proteins, namely, actin-related protein 2/3 complex
subunit 4 (ARPC4), dual specificity mitogen activated protein kinase 4 (MP2K4), ectoderm-
neural cortex protein 1 (ENC1), and matrix metalloproteinase-27 (MMP27), were detected
only in BC patients. Lee and collaborators [35] studied blood and serum N-glycans to
identify markers for BC diagnosis because changes in protein glycosylation are linked to
the development and progression of cancer. In this study, 24 NosID glycan biomarkers
that differentiate HCs from N (−) and N (+) BrC subtypes were identified. Moreover, the
sensitivity between normal and stage 1 BC samples was 84.1%, indicating that N-glycomics
is an encouraging approach for quick and sensitive early BC diagnosis in the clinic.

3.3. Cervical Cancer

The second most prevalent gynecological malignancy for women is cervical cancer
(CC), which poses a serious threat to their lives and general well-being. Despite the
numerous discoveries that have considerably decreased the prevalence of CC, it continues
to be a major source of fatalities in weaker populations of women. Therefore, to identify
alternative molecular therapeutic targets that are more efficient than the current ones,
additional knowledge of the pathophysiology of cervical cancer is required. In this sense,
Chen et al. [39] establish potential serum biomarkers for CC by comparing serum peptidome
profiles among the three groups (HCs, female CC patients before and after surgery) using
MB-WCX tandem with MALDI-TOF MS. The data obtained showed that the 3 peaks
(m/z: 2435.63, 2575.3, and 2761.79 Da) may be prognostic serum biomarkers for CC since
AUC values of these 3 peaks ranging from 0.692 to 0.846. LC-ESI-MS/MS and the Uniprot
database were used to identify these peaks in further detail as regions of transketolase
(m/z 2435.63, 499–524), apolipoprotein A-I precursor (m/z 2575.3, 245–260), and isoform 1
of fibrinogen alpha chain precursor (m/z 2761.79, 603–629).

To better understand the molecular mechanisms behind CC, Kontostathi et al. [37]
performed a proteomic investigation of the secretome from the following useful cervical
cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV−), and HCK1T (normal). The data
obtained suggest that NRF2-mediated oxidative stress response is a potential biomarker of
CC since its levels were up-regulated in SiHa and C33A compared to HCK1T. The analyses
of differently expressed proteins between HeLa and invasive HeLa-I5 cells were performed
using 2D-DIGE tandem with MALDI-TOF MS by Shih and collaborators [38]. According
to the evidence, progesterone receptor membrane component 1 (PGRMC1) may promote
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the growth and spread of cancer by altering the functions of EMT indicators and the G1
to S cell cycle transition. So, according to these experts, PGRMC1 may serve as a crucial
diagnostic biomarker and therapeutic target for the treatment of metastatic CC.

3.4. Colorectal Cancer

The glandular, epithelial cells of the large intestine are frequently the source of col-
orectal adenocarcinoma. This aggressive kind of tumor develops when certain epithelial
cells undergo a sequence of genetic or epigenetic changes that give them a selective ad-
vantage [113]. The mortality rate can be decreased by early detection and a variety of
medical treatments, but this requires further research into the molecular intricacies of
cancer development, survival, and spread. Buttacavoli et al. [43] made a comparative
proteome investigation using 2D-DIGE combined with MALDI-TOF MS between pooled
CRC surgical tissues and adjacent non-tumoral tissues to discover possible target pro-
teins correlated with carcinogenesis. This study discovered a novel potential biomarker
for CRC, transgelin (TAGL), which has four distinct protein species and was collectively
down-regulated in colon cancer tissues. It was selected as the top CRC biomarker. In
addition, Kirana et al. [19] find protein biomarkers to classify CRC patient’s risk of disease
spread. For this purpose, the cancer cells from primary colorectal tumors of stage II patients
were isolated using laser micro-dissection, whereas the protein expression differences were
profiled by 2D-DIGE with saturation CyDye labeling and recognized using MALDI-TOF
MS. The results indicate that the expression of HLA class 1 histocompatibility antigen
B39 alpha chain (HLAB), protein 14-3-3β, latent-transforming growth factor beta bind-
ing protein 3 (LTBP3), a disintegrin and metalloproteinase with thrombospodin motifs 2
(ADAMTS2), protein jagged-2 (JAG2) and nucleoside diphosphate kinase B (NME2) on
tumor cells was significantly associated with disease progression. On the other hand, using
serum samples, Liu and collaborators [40] isolated the immunoglobulin G (IgG) N-glycome
using a MiniChrom™ Pre-packed Columns with Eshmuno® and observed that nine of
IgG N-glycans were expressed differently in CRC compared with HCs. Additionally, five
out of them were significantly changed in CRCs at all tumor node metastasis stages as
compared with HCs. Yu et al. [41] used a serum proteome method to detect potential CRC
cancer biomarkers. Serine/threonine kinase 4 (STK4, also known as MST1) is suggested
as a potential biomarker for the early identification, prognosis, and prediction of distant
metastasis of CRC by the findings.

3.5. Gastric Cancer

An estimated 723,100 people worldwide died from gastric cancer in 2012 [114]. It has
one of the highest fatality rates because of late detection, which occurs after the cancer has
advanced to an inoperable stage and cannot be removed through surgical resection [45].
To find new biomarkers with early diagnostic significance, establish effective diagnos-
tic procedures, and uncover new targets for the treatment of GC, analytical approaches
combined with proteome investigations have been actively investigated in recent years.
Shi et al. [45] screened potential biomarkers using magnetic beads-based immobilized metal-
ion affinity chromatography (MB-IMAC-Cu) combined with MALDI-TOF MS. In this study,
107 peptides were detected, 12 of which were differentially expressed among GC patients
(pre- and post-operative) and HCs. Twelve peptide peaks were recognized as fibrinogen
alpha chain precursor (FGA), alpha-2-HS-glycoprotein precursor (AHSG), apolipoprotein
A-I precursor (APOA1), hemoglobin subunit beta (HBB), isoform 5 of thioredoxin reductase
1, cytoplasmic (TXNRD1), eukaryotic peptide chain release factor GTP-binding subunit
ERF3B (GSPT2), and cytoskeleton-associated protein 5 (CAKP5). Lee et al. [44] used pectoli-
narigenin (PEC), a naturally occurring flavonoid found in citrus fruits that has been shown
to have antitumor effects in a number of malignancies. These scientists demonstrated that
the activation of cell cycle arrest, apoptosis, and autophagy by PEC reduced the viability
of human gastric cancer cells AGS and MKN28. In addition, new target proteins, such as
the E3 ubiquitin-protein ligase LRSAM1 (LRSAM1) and probable ATP-dependent RNA
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helicase DDX4 (DDX4), are differentially expressed in both cell lines after PEC treatment.
On the other hand, Qin et al. [46] used ethyl esterification derivatization combined with
MALDI-TOF MS to create glycan indicators that would indicate the beginning and pro-
gression of gastric cancer using thorough serum glycomic analysis. The results indicate
that core fucose (AUC = 0.923) played an outstanding diagnostic performance for the early
detection of GC.

3.6. Liver Cancer

According to GLOBOCAN 2020 [1], liver cancer was the fourth greatest cause of cancer-
related mortality globally [115], accounting for nearly 830,000 fatalities. The prognosis for
patients with liver cancer is still not the greatest, despite the substantial advancements
achieved over the previous few decades. Because of the high morbidity and mortality asso-
ciated with the malignancy, the discovery of efficient markers and the investigation of their
potential roles have significant clinical significance for the early diagnosis, prevention, and
control of liver cancer. A pilot investigation of salivary N-glycome in cirrhosis, hepatocellu-
lar carcinoma, and chronic hepatitis caused by the hepatitis B virus (HBV) was conducted
by Qin et al. [47]. A total of 40, 47, 29, and 33 N-glycan peaks, respectively, were found and
annotated in HCs, HBV-infected individuals, individuals with cirrhosis, and individuals
with hepatocellular cancer. The proportion of fucosylated N-glycans was increased to a
greater extent in the hepatocellular carcinoma patients than in any other group, nonetheless,
the proportion of sialylated N-glycans declined more in hepatocellular carcinoma patients
than in any other group. Park et al. [48] exploited a simple and robust cancer diagnostic
method using MALDI-TOF MS-based total serum proteome profile. The results showed
that the optimized serum preparation protocol provided elevated reproducibility, and
PLS-DA established a statistically significant change between liver cancer patients and
HCs proving to be a valuable tool to a liver cancer diagnosis. Sun et al. [49] identified
81 protein peaks in serum with HBV-related liver cancer, and 27 protein peaks had signifi-
cant differences (p < 0.05), of which 17 were up-regulated and 10 were down-regulated. The
blind test showed that the sensitivity and specificity of the three protein peaks (m/z 9179.55,
7789.00, and 4097.00) were 90.91% and 77.78%, respectively. Furthermore, Li et al. [50]
established the GA, SNN, and QC models to distinguish malignant from benign liver
tumors. Recognition capabilities of the established models were 100%, 89.38%, and 80.84%
for GA, SNN, and QC, respectively, where the accuracy rates of the blinded validation
test were 78% (GA), 84% (SNN), and 84% (QC). Three peaks with m/z values of 2860.34,
2881.54, and 3155.67 were found among the 27 discriminatory peptide peaks and were
determined to represent fragments of the fibrinogen alpha chain, fibrinogen beta chain,
and inter-alpha-trypsin inhibitor heavy chain H4, respectively. Mahalingam et al. [51] used
machine learning utilizing spectral data and alpha-fetoprotein to build a model for early
detection of hepatocellular carcinoma. The data obtained show sensitivity and specificity of
the test higher than 80% to detect hepatocellular carcinoma. The findings point to a novel
method for hepatocellular carcinoma diagnosis that uses a machine learning algorithm that
incorporates mass spectral data and AFP values from blood samples.

3.7. Lung Cancer

Internationally, lung cancer continues to be the primary reason for cancer-related
fatalities in both men and women [116]. Because of the late-stage diagnosis and the inad-
equate treatment choices, the survival rate is subpar, and as a result, screening for novel
biomarkers is critical for the early detection of lung cancer. Hou et al. [52] studied cell-type
lung cancer cells proteome profile and observed that five differentially expressed pro-
teins, including ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1), cytokeratin
19 (CK19), cytokeratin 8 (CK8), ERO1L, and peroxiredoxin 2 (PRDX2), were significant
between NCI-H358 and A549 cells. None of them demonstrated applicability as a reliable
lung cancer biomarker. Yu and collaborators [25] combined differential ultracentrifugation
and MALDI-TOF MS to establish the proteome pattern of the human lung carcinoma cell
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line (A549). The extracellular vesicles of lung cancer cells contain RPS27A (a ribosomal
protein), which is crucial for mRNA translation and ribosome assembly for the differentia-
tion of cancer cells and is associated with cancer cell migration and invasion. This study
also found S100A10_S100 calcium-binding protein A10, a recognized tumor diagnostic
marker. Furthermore, Saleem et al. [53] used plasma to trace a proteome profile. Only
seven proteins—haptoglobin, retinol-binding protein 4, -1 antitrypsin, Ig lambda 2 chain C
region, Ig alpha 1 chain C region, clusterin, and transthyretin—were found to be expressed
in disease and smoker groups at higher levels than in HCs out of a total of 23 proteins.
Moreover, haptoglobin and α-1-antitrypsin were observed to be consecutively increased in
HCs along with smoking, obstructive pulmonary disease, and lung cancer. Xu et al. [23]
explored the potential of peptides as biomarkers in malignant pleural effusion (MPE) of
lung cancer. Five peptide peaks (m/z 917.37, 1466.5, 3216.87, 4469.39, and 4585.21) were
chosen to identify MPE and tuberculosis pleural effusion (TPE) by MALDI-TOF MS. On
the other hand, Li et al. [24] investigated unfailing biomarkers for an early and accurate
diagnosis of small-cell lung cancer (SCLC). Five peptide peaks with m/z 1021.55, 1467.31,
3139.18, 4137.6, and 8944.33 showed the greatest efficiency in separating the patients from
HCs. To identify possible tumor markers for NSCLC, Song et al. [54] examined the serum
peptide model between non-small-cell lung cancer (NSCLC) patients and HCs, as well as
between matched pre- and post-operative NSCLC patients. Based on the results, it was
possible to observe that among the three models built, the GA model had the greatest
diagnostic efficacy. Lv and collaborators [55] extracted peptides from serum and urine
using copper ion-chelating nanomagnetic beads and identified them with MALDI-TOF
MS. Eight differentially expressed peptides in urine and 19 peptides that are expressed
differently in serum. Blinded model validation was performed using five peptides peak,
and the classification model of this study has great theoretical significance for detecting
patients with small-cell lung cancer, as shown by the good results that were achieved.

3.8. Ovarian Cancer

Ovarian cancer (OC) is the seventh most prevalent cancer in women and the one with
the greatest mortality rate because of its late detection and vague symptoms, being the
most lethal gynecological malignancies [16]. As a result of ineffective screening, there is a
growing need for innovative tools and cutting-edge methods to diagnose ovarian cancer.
Several studies have been performed on this topic, namely, Rizk et al. [16] combines MagSi-
proteomics C8 beads, Ultraflextreme MALDI-TOF, and ClinProTools software (version 3.0)
to investigate the plasma proteome profile with the aim of discriminating benign masses
from epithelial OC. Using 21 peaks for external validation, epithelial OC were distinguished
from HCs with a sensitivity of 73% and a specificity of 82.8%, whereas a 5-peak profile
distinguished epithelial OC patients from those with benign ovarian masses with a sensi-
tivity of 81% and a specificity of 73.7%. Additionally, a 20-peak profile with a recognition
capability of 88.3% and cross-validation of 70% was created to distinguish between the
early and late phases of the OC. Also, Swiatly et al. [17] screened the serum proteome
profile using an SPE enrichment procedure coupled with MALDI-TOF MS to discriminate
the OC patients from HCs. Four potential OC biomarkers (complement C3, kininogen-1,
inter-α-trypsin inhibitor heavy chain H4, transthyretin) that were overexpressed in this
pathology were identified. Pais et al. [56] developed a rapid, fully automated, and greatly
sensitive and inexpensive screening tool for early-stage OC detection based on MALDI-TOF
MS of blood serum proteome profile. This approach reported optimal sensitivities (from 82
to 92%) with specificities between 86 and 95% for early-stage OC, whereas for later-stage
OC, longitudinal models and circBNC2-based tests report sensitivities of 90–100% with
specificities of 84–95%.

3.9. Prostate Cancer

The fifth leading cause of mortality from cancer in males globally is prostate cancer [1].
Due to its continued prevalence, prostate cancer (PCa) is the second most common type of
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urological cancer in men diagnosed with the disease [57]. It is classified as a heterogeneous
disease with a range of clinical behaviors, from deadly tumors to aggressive tumors,
and is characterized by diverse clinical behavior. This makes early diagnosis and the
detection of PCa aggressiveness essential preconditions for effective patient treatment [117].
Padoan et al. [22] performed peptidome analysis of serum and post-prostatic massage urine
specimens to identify PCa biomarkers. The findings showed that 43 peptides were shared
across urine and serum, and numerous characteristics were shown to be linked to illness.
Two patterns of serum fragmentation also matched the complement C4-A. Zhao et al. [59]
used 2DE followed by MALDI-TOF MS to differentiate expressed urinary proteins among
patients with PCa, benign prostatic hyperplasia (BPH), and HCs. Ferritin heavy chain
(FTH) gene and ferritin light chain (FTL), which are essential for PCa cells’ proliferation,
apoptosis, and migration, were among the 15 distinct types of elevated proteins found.
Thus, FTL and FTH1 could be used as candidate cancer-relevant genes involved in the
formation and progression of PCa. Hydrophilic interaction chromatography nanoparticles
(HICNPs) were employed by Sun et al. [58] to enrich the proteins and peptides in the blood
of several PCa patients and healthy controls. With an analytical accuracy of 77%, PCA and
PLS-DA of the samples demonstrated a considerable difference in the MALDI-TOF MS
signals between PCa and HCs, approaching those of approaches based on prostate-specific
antigen.

3.10. Other Cancers

TMDs are a diverse group of pathologies that affect the temporomandibular joint,
masticatory muscles, and surrounding structures and result in pain and dysfunction [118].
They affect 10–15% of adults and appear to affect women three times more frequently than
men [119]. Numerous attempts have been undertaken in recent years to investigate certain
biochemical indicators of TMDs. A proper validation of any laboratory tests for the diagno-
sis and prognosis of these disorders has not yet been achieved. In this sense, Laputková
et al. [30] determined if individuals with TMDs and HCs had different polypeptide/protein
profiles in their unstimulated total saliva. With a recognition capability of 97.2% and cross-
validation of 84.3%, these authors discovered a panel of salivary markers that predicted
the patients with TMDs (m/z 2728.0, 4530.2, 5174.2, 5193.3, 6303.4, 6886.7, 8141.7, 8948.7,
10,663.2, 10,823.7, and 11,009.0). Regarding plasma exosomes, Zheng et al. [60] separated
exosomes from human plasma using sequential size-exclusion chromatography (SSEC)
with the purpose of discriminating different cancers (e.g., BC, PC). In this work, the same
training set and test set as Exo-ANN were used to evaluate the classification performance
using the following four traditional machine-learning techniques: logistic regression (LR),
decision tree (DT), K-nearest neighbor (KNN), and support vector machine (SVM). The
results indicate that the optimized Exo-ANN model distinguished distinct cancer types
effectively using an independent test set.

With an annual incidence of 6–7 occurrences per 1,000,000 persons worldwide [120],
multiple myeloma (MM) is the second most prevalent hematological malignancy. This type
of cancer is linked to plasma cells, and despite enormous efforts over the past few decades,
treatment for MM remains ineffective in addition to its bad prognosis. Regarding MM,
Bai et al. [18] studied the peptides in serum from patients with MM and concluded that
α-fibibrinogen, dihydropyrimidinase-like 2, α-fetoprotein, and platelet factor 4 were strong
candidates for biomarkers once they showed dynamic changes along the progression or
remission of MM. Also, their levels may be used for the monitoring of the disease state
and assessment of therapeutic effects. Regarding the gestational trophoblastic diseases
(GTDs), Banach and collaborators [61] performed protein/peptide profiling on the urine
of patients affected with GTDs, and from healthy pregnant and non-pregnant controls
using MALDI-TOF MS. The findings show that the composition of the ions in the several
groups under study differs significantly. Additionally, by contrasting the urines from the
post-treatment patients and the non-pregnant controls, these authors were able to pinpoint
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the presence of complement C4A (m/z 1895.43) and uromodulin fragments (m/z 1682.34
and 1913.54).

4. Mass Spectrometry-Based Proteome

An MS/MS-based proteome is a suitable analytical approach for the identification,
characterization, and quantification of proteins (e.g., the phosphoproteome, proteoglycome,
or peptidome) in a diversity of biological fluids [121]. Nevertheless, this analytical ap-
proach indirectly incorporates a variety of additional fractionation, separation, and other
analytical approaches [122]. In MS/MS-based proteomes, a mixture of proteins is isolated
and chemically or enzymatically cleaved into peptides, and the resulting complex peptide
mixture is fractionated using different methods (e.g., gel electrophoresis, high-performance
liquid chromatography (HPLC), ultra-high-performance liquid chromatography (UPLC),
nano-liquid chromatography (nano-LC), ion mobility) before the detection via MS/MS or
MSn [121]. Since it requires the acquisition of an initial mass spectrum (MS1) of the intact
(precursor) peptide, dissociation of the isolated target precursor ion into smaller fragments,
and subsequent mass analysis of the fragments (MS2), the detection via MS/MS provides
specific information for the peptide amino acid sequence [122]. Collision-induced disso-
ciation (CID), electron capture dissociation (ECD) and/ or electron transfer dissociation
(ETD) are the most universal techniques used in peptide fragmentation. The electron-based
fragmentation techniques (e.g., ECD, ETD) use low-energy electrons to produce protein
fragment ions and, for this reason, offer an improved sequence coverage of greater analytes
that are highly charged and display excellent potential for enhanced characterization of
labile PTMs (e.g., phosphorylation) [122].

Regarding MS, currently, MALDI-TOF MS and liquid chromatography–tandem mass
spectrometry (LC-MS/MS), in combination with advanced bioinformatics tools, are the
most common techniques used in proteomic analysis to identify several human cancer
biomarkers [17,22,123,124]. Both of them provide qualitative and quantitative analysis of
proteins as high-throughput research technologies [123]; it depends on analyzing possible
biomarkers by identifying distinctive MS fingerprints. Current research has revealed that
MALDI-TOF MS profiling is a simple, non-invasive, and economical tool commonly used
for top-down proteomes since it comprises the investigation of intact proteins being efficient
in the study of high molecular weight proteins (tens or hundreds of kilodaltons). MALDI-
TOF MS has been reported as a robust and sensitive instrument for clinical trials [17] due to
the technician processing time and overall 95% accuracy, which enables patients to receive
treatment more quickly and accurately. Additionally, because ions have low internal energy,
direct molecular weight evaluation is possible by using soft ionization in MALDI-TOF MS,
which enables the observation of ionized molecules with little to no fragmentation [125].
Due to the MALDI-TOF MS inherent limitations, including low analytical sensitivity
without prior pre-treatment and the inability to discriminate or identify the underlying
peptides that may be in charge of the m/z values, LC-MS/MS could be used as an alternative
identification method.

LC-MS/MS is a high-throughput method frequently used in bottom-up proteomes that
allow the determination of complete protein sequences and PTMs [12], provides discrimina-
tion between analytes and has the ability to simultaneously quantify thousands of proteins
in a short time. Additionally, it may be automated to enhance performance, accuracy, sensi-
tivity, and reproducibility in high-throughput environments. [126]. For proteome analysis,
electrospray ionization (ESI), a soft ionization method is the most suitable interface for
LC-MS/MS since without destroying chemical bonds or further fragmenting the peptides,
ionization is achieved. The sample is prepared for the ESI technique as a liquid at atmo-
spheric pressure, and it flows into a very small needle that is charged with a high voltage.
The droplets of solvent that are released from the needle tip dissociate into a tiny spray of
highly charged droplets as a result of electrostatic repulsion. The droplets vanish when the
solvent evaporates, leaving behind highly charged molecules [127]. Currently, bottom-up
LC-MS/MS-based proteomics analyses, in which proteins are digested into small peptides
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prior to LC-MS/MS analysis, are frequently used to identify sites of PTMs on peptides due
to better fragmentation and fewer possibilities of localization [128]. Nevertheless, in most
quantitative proteomics studies, the bottom-up approach introduces a ‘peptide-to-protein’
inference problem, which complicates the identification and quantification steps [129],
whereby this method obliterates data pertaining to the interactions between several PTMs
on a certain protein species [128]. Comparatively, the benefit of an LC-MS/MS analysis of
intact proteins is that many PTM sites are retained, resulting in a variety of protein forms.
In other words, proteoforms have the benefit of easier and quicker sample preparation,
which decreases the possibility of experimentally produced PTMs, such as deamidation
and oxidation. Proteoforms may also be identified in the same study [130]. For this rea-
son, the top-down MS approach is often carried out for relative quantification of protein
modifications, as small modifying groups have much less impact on the physicochemical
properties of intact proteins compared to those of peptides [131,132]. Although top-down
analysis may be employed in a high-throughput setting, it becomes more challenging to
effectively fragment the ionized protein and resolve fragment peaks as the protein size
grows, making PTM identification and site localization problematic [128,133]. Due to
inadequate fragmentation, as well as other problems as the protein size increases, such as
solubility, the inherent difficulties in LC separation, and restrictions in mass spectrometer
efficiency, top-down MS/MS has traditionally concentrated on smaller proteins (less than
roughly 50 kDa) [128]. Table 2 summarizes the main differences between MS/MS-based
proteomes and MALDI-TOF MS proteome profiling [121,134].

Table 2. Differences between MS/MS-based proteomics and MALDI-TOF MS proteome profiling
[121,134].

MS/MS MALDI-TOF MS

Sample Liquid form Solid form and/or liquid form
to dry on plate

Sample pre-treatment
Requires more extensive
sample
pre-treatment/clean-up

Minimal sample pre-treatment

Separation/fraction Usually required an online or
offline method Not required

Molecules Peptides Proteins, large glycopeptides,
oligonucleotides

Ionization Soft ionization with solvent
and electronebulization Soft ionization with matrix

Fragmentation Yes No
Analyze time Minutes or hours 20–30 s
Quantification Relative and/or absolute Only relative

Data Identification and
characterization of peptides Only provides putative m/z

In addition, the protein extraction/digestion in bottom-up proteomics is a crucial step
for the identification and quantification of the proteome. Nevertheless, this procedure
involves the use of a detergent (e.g., sodium dodecyl sulfate) and/or buffers (e.g., phosphate
buffered saline) that are incompatible with downstream MS/MS analysis, since it forms
peak clusters that mask all other signals in the MS; in addition, can form salt crystals during
electrospray ionization, and may block the LC columns [135]. To avoid these problems, a
pre-treatment and clean-up procedure should be applied before LC-MS/MS analysis to
remove the interferent compounds, which increases the analysis time. As opposed to that,
MALDI-TOF MS requires a minimal sample pre-treatment, and for this fact, each single
run can take from 20 to 30 s.
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5. Future Perspective

MALDI-TOF MS has the potential to revolutionize cancer diagnostics by enabling
biomarker discovery, enabling tissue imaging, and quantifying biomarker levels. However,
the use of MALDI-TOF MS as a diagnostic tool for cancer is still evolving, and there are
some critical assessments that need to be addressed, including further validation, standard-
ization, data interpretation, optimization of sensitivity and specificity, cost considerations,
and expanding biomarker coverage [36,136]. In this sense, the standardization of sam-
ple preparation, instrument calibration, and data analysis protocols is crucial to ensure
the reproducibility and reliability of the data obtained [136,137]. On the other hand, the
complexity of the data generated by MALDI-TOF MS can make data interpretation chal-
lenging [138] in the context of the development of robust algorithms and bioinformatics
tools for data analysis and for extracting meaningful information from the mass spec-
tra [136]. Moreover, MALDI-TOF MS can be used not only for the identification of one
specific target analyte but also for mass fingerprinting. These approaches have advan-
tages and disadvantages; however, their combination could open a new window in cancer
diagnostics.

6. Conclusions

The identification of new biomarkers represents a crucial help to clinicians for early
detection, diagnosis, and tumor progression. In this sense, the proteomic/peptidomic
combined with MALDI-TOF MS is considered a suitable approach towards 5.0 generation
on cancer diagnostics and monitoring. Nevertheless, the validation of the data obtained
is influenced by errors introduced during pre-analytical (e.g., sample quality control) and
analytical (e.g., sample pre-treatment, instrumental analytical conditions) assays. For this
fact, to guarantee the reproducibility of the analysis it is required robust, precise, and
standardized procedures in the collection, handling, and storage of the biological samples.
In addition, a sample pre-treatment procedure (e.g., ultrafiltration, SPE, MBs, IAC, PTMs)
that includes steps like fractionation, isolation, and enrichment of the target analytes,
which should be performed prior to the MALDI-TOF MS analysis to obtain high-quality
analytical results with high selectivity, accuracy, reproducibility, and low sensitivity limits.
After that, the robustness of MALDI-TOF MS data is submitted to statistical analysis to
establish putative cancer biomarkers. Nowadays, several chemometric approaches provide
the proteomics field with important data. However, some of them need extra statistical
expertise for the processing and interpretation of the data and for this reason, more friendly
interfaces should be developed.

Despite all the restrictions related to MALDI-TOF MS discussed in the review, this an-
alytical approach represents a powerful tool for clinical routine and personalized medicine
since it is robust, cost-effective, easy to use, and requires a low analysis time. Moreover,
proteome and the ongoing advances in MALDI-TOF MS will allow the introduction of new
approaches to enhance sensitivity and reproducibility with the purpose of providing better
robustness to MALDI-TOF MS data in the establishment and validation of novel cancer
biomarkers.
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