What Are We Eating? Surveying the Presence of Toxic Molecules in the Food Supply Chain Using Chromatographic Approaches
Abstract
:1. Introduction
- I.
- Natural toxins: Toxic chemical substances produced by different organisms. The following categories are included in this group: mycotoxins, plant toxins, and marine toxins.
- II.
- Environmental pollutants: Chemical substances released into the air, water, or soil as a result of industrial or agricultural practices. Pesticides, xenohormones, and veterinary drug residues are also included in this group.
- III.
- Food-processing contaminants: Chemical substances naturally formed in food during industrial processes or cooking.
2. Methodology to Review the Food Alerts and Literature
3. Major Classes of Toxic Molecules Reported on Foodstuffs
3.1. Pesticides
3.2. Mycotoxins
3.3. Veterinary Drug Residues
3.4. Plant Toxins
3.5. Marine Toxins
3.6. Food-Processing Contaminants
3.7. Environmental or Industrial Contaminants
Compound | Origin and Food Contamination | Toxic Effects | Refs. |
---|---|---|---|
Pesticides | |||
Benzimidazoles |
|
| [43,44] |
Carbamates |
|
| [45,46] |
Nitro compounds or dinitroaniline pesticides |
|
| [47,48] |
Organochlorine pesticides |
|
| [49] |
Organophosphorous pesticides |
|
| [50,51] |
Pyrethroids |
|
| [52] |
Triazines |
|
| [53,54] |
Veterinary drug residues | |||
Beta-lactams |
|
| [55,56] |
Dyes (malachite green and crystal violet) |
|
| [57] |
Fluoroquinolones |
|
| [58] |
Macrolide antibiotics |
|
| [59] |
Nitrofuranzone |
|
| [60] |
Sulphonamides |
|
| [61] |
Tetracyclines |
|
| [62] |
Plant toxins | |||
Cannabinoids and derivatives |
|
| [63,64] |
Pyrrolizidine alkaloids |
|
| [28,65,66] |
Tropane alkaloids |
|
| [29,67] |
Marine toxins | |||
Amnesic shellfish poisoning (ASP) |
|
| [34] |
Diarrhetic shellfish poisoning (DSP) |
|
| [34] |
Paralytic shellfish poisoning (PSP) |
|
| [34] |
Mycotoxins | |||
Aflatoxins |
|
| [68,69] |
Alternariol |
|
| [70,71,72] |
Citrinin |
|
| [73,74,75,76] |
Deoxynivalenol |
|
| [77] |
Ergot alkaloids |
|
| [78] |
Fumonisins |
|
| [79] |
Ochratoxin A |
|
| [77,80] |
Patulin |
|
| [81,82] |
T-2 and HT-2 toxins |
|
| [83] |
Zearalenone |
|
| [84] |
Food-processing contaminants | |||
Acrylamide |
|
| [85,86] |
Glycidol and glycidyl esters |
|
| [87,88] |
Polycyclic aromatic hydrocarbons (PAHs) |
|
| [89,90] |
3-MCPD and its esters |
|
| [87,91] |
Environmental or industrial contaminants | |||
Dioxins and furans |
|
| [92,93] |
Mineral oil hydrocarbons (MOHs) |
|
| [94] |
Sulphites and sulphur dioxide |
|
| [95,96,97] |
4. Overview of the Main Chromatographic Approaches Used to Assess Food Safety
Compound | Sample | Extraction Method | Analysis | Results (LODs/Recoveries) | Ref. |
---|---|---|---|---|---|
Pesticides | |||||
Imidacloprid, acetamiprid, clothianidin, and atrazine | Fruits and vegetables | QuEChERS: 5 g sample, 5 mL ACN; 0.6 g MgSO4, and 0.2 g PSA | LC-MS/MS | 0.08–141 μg/kg/70–110% | [103] |
Organophosphorus pesticides | Juices, water, tomato, cucumber, and honey samples | 75 mL sample; nanocomposite comprising metal-organic framework MIL-101(Cr), and graphene nanopowder | GC-MS | 0.005–15.0 µg/kg/84–110% | [51] |
Organophosphorus pesticides | Vegetables | 30 min sonication of 4 g homogenised samples mixed with 8 mL ACN; collect the filtrate; repeat three times; combine and evaporate (50 °C N2 stream); redissolve (1 mL acetone); MSPE: add 25 mg Fe3O4@COF@Zr4+ to the sample solution; 30 min vortex; discard supernatant; elute (1 mL acetone; 8 min US); 0.22 μm filtration | GC-FPD | 0.7–3.0 μg/kg/87–121% | [104] |
Organophosphorus pesticides (phosalone and chlorpyrifos) | Red grape juice and sour cherry juice | 10 mL sample; DES-UALLME: choline chloride/4-chlorophenol (408 μL) | HPLC-UV | 0.070–0.096 ng/mL/87.3–116.7% | [105] |
14 organophosphorous pesticides | Fruits and vegetables | 2 g sample; SPME: N-doped C-(C3N4@MOF) fibre coating | GC–MS | 0.23–7.5 ng/g/82.6–118% | [50] |
Pyrethroids (transfluthrin, fenpropathrin, fenralerate, ethofenprox, and bifenthrin) | Tea beverages and fruit juices | 5 mL sample; DES-DLLME: Hexafluoro-isopropanol-based hydrophobic DES (0.15 g) | HPLC-DAD | 0.06–0.17 ng/mL | [52] |
Neonicotinoids | Water | 2 mg MOFs + 1 mL NEOs standards; 5 min incubation; centrifugation (14,000 rpm, 2 min); 500 μL MeOH ultrasonic elution; vacuum evaporator, 100 μL mobile phase solubilisation | LC-MS | 0.02–0.1 ng/mL | [106] |
Veterinary drug residues | |||||
52 veterinary drug residues | Mutton or leg meat | 5 g sample; QuEChERS: modified with reduced graphene oxide-melamine sponge (r-GO@MeS) | UPLC–MS/MS | LOD: 0.02–2.0 μg/kg LOQ: 0.05–5.0 μg/kg/63.7–109.5% | [107] |
103 veterinary drug residues | Milk and dairy products | 5 g liquid milk or 1 g milk powder; QuEChERS with dispersive solid phase: 100 mg C18 and 300 mg anhydrous sodium sulphate | UPLC-MS/MS | LOQ: 0.1–5 μg/kg (milk) and 0.5–25 μg/kg (milk powder)/>60% | [108] |
Beta-lactams, quinolones, sulphonamides, and tetracyclines | Fish, poultry, and red meat | 1 g sample; SPE: 5 mL ACN | LC-MS/MS | LOD: 0.3–15 µg/kg, LOQ: 0.8–45.3 µg/kg/82–119% | [109] |
Sulphonamides | Pork, milk, and water | 100 mL sample loaded through the TPB-DMTP-COF column; washing (3 mL water); drying; elution (8 mL MA); drying (N2 flow); eluent re-dissolved (1.0 mL ultrapure water) | LC–MS/MS | 0.5–1.0 ng/L | [110] |
Malachite green and crystal violet | Hairtail fish | 5 g sample; dSPE: NiO/ZnO-coated carbon microspheres, 3 mL 3:7 MeOH–H2O, 4 mL 9:1 MeOH | UPLC-UV | 0.50 μg/L (malachite green) and 0.35 μg/L (crystal violet) | [57] |
8 nitrofurans | Muscle, milk, eggs, honey, and casings | 2 g sample; hydrolysis and derivatisation, followed by ethyl acetate extraction | UHPLC-MS/MS | 93.5–127.5% recovery | [60] |
Doxycycline | Chicken claws | 2 g sample; extraction with 5 mL 5% TCA | UHPLC−MS/MS | 5 μg/kg/80–110% | [111] |
Estrogens | Milk and cosmetics | 5 mL milk + perchloric acid (100 μL, 10% v/v); homogenisation and centrifugation (3 min 10,000 rpm); supernatant pH adjusted to 4 (NaOH, 1 M); 0.45 μm filtration; lotion centrifugation (10 min 10,000 rpm); supernatant pH adjusted to 4 (HCl 1 M); 0.45 μm filtration; add 40 mg MILs + 0.275 g NaCl; 5 min shaken 1500 rpm; recover MILs; 500 µL ACN elution | HPLC-UV | 5–15 ng/mL/98.5–109.3% | [112] |
Biotoxins | |||||
Ergot alkaloids and their epimers | Oat-based foods and food supplements (bran, flakes, flour, grass, hydroalcoholic extracts, juices, and tablets) | QuEChERS: 1 g sample; 4 mL ACN and 5 mM ammonium carbonate (85:15, v/v); dSPE: 150 mg C18:Z-Sep+ (1:1); residue reconstituted with 750 µL MeOH 50% (v/v), 0.22 µm nylon membrane filter | UHPLC–MS/MS | LOQ: 3.2 μg/kg/89.7–109% | [78] |
Lipophilic marine toxins (yessotoxins, dinophysistoxins, okadaic acid, azazspiracids, and spirolides) | Fresh and processed shellfish | 100 g sample; QuEChERS: 2 mL MeOH/ethanol/isopropanol; dSPE: 50 mg graphene oxide/ 100 mg MgSO4 | UPLC-MS/MS | LOD: 0.10–1.47 μg/kg LOQ: 0.32–4.92 μg/kg/85–117.4% | [113] |
Staphylococcal enterotoxin type A (SEA) | Cow’s milk | 25 g sample, clean up: pH control (pH 3.5 ± 0.5 + 5 M HCl; pH 7.5 ± 0.1 + 5 M NaOH) and TCA precipitation (20% TCA solution); protein denaturisation (5 mL 100 mM Tris-HCl, pH 8.5, 7 M guanidium hydrochloride + 10 mM EDTA); enzymatic digestion and desalting: trypsin digestion (1:100 (w/w)), 1% formic acid acidification, desalting with a GL–Tip styrene-divinylbenzene | LC–MS/MS | LOQ: 10 µg/kg/70–120% | [114] |
Okadaic acid | Clams | MSPE: 2 g samples + 9 mL MeOH, mix; clean-up: 3 mg Fe3O4@TaTp dispersed in 200 μL MeOH, extraction (5 mL blank seawater containing okadaic acid) and derivatives incubated with Fe3O4@TaTp; rinse with 200 μL ultrapure H2O, 90% MeOH desorption (50 μL); extraction: 5 mg Fe3O4@TaTp dispersed in 200 μL MeOH, extraction with 1 mL reconstituted solution of shellfish samples spiked with okadaic acid and derivatives incubated with Fe3O4@TaTp; rinse with 200 μL ultrapure H2O, 200 μL ACN desorption; 0.22 μm nylon filtration | LC-MS/MS | 0.5 pg/mL (seawater) and 0.04 µg/kg (shellfish) | [100] |
Pinnatoxin-G | Mussels | 2 g mussel tissue; 9 mL methanol; 2.5 mL methanolic extract hydrolysed with 313 µL 2.5 M NaOH; neutralised with 313 µL 2.5 M HCl; 0.22 µm filtration | LC–MS/MS | LOD: 0.1 µg/kg LOQ: 0.4 µg/kg/62–110% | [115] |
Biocontaminants | |||||
Tropane alkaloids | Leafy vegetables | 0.1 g sample; µQuEChERS: 150 mg MgSO4, and 25 mg PSA | HPLC-MS/MS | LOQ: 2.2–2.3 ng/g/82–110% | [67] |
Histamine | Cheese and cured meat products | 10 g sample; 100 mL HNO3 (0.1 mol/L); ultrasonication (15 min, 35 kHz, 40 °C) | IC-PCD | 0.15 mg/kg/91.3–116.9% | [116] |
Mackerel canned fish | 5 g sample; 20 mL perchloric acid 0.2 M; SPE: 0.5 g cationic exchange resin; column derivatisation: ortho-phthalaldehyde (0.1 mL), and 2-mercaptoethanol | HPLC-UV | LOD: 1.8 mg/kg LOQ: 5 mg/kg/98–99% | [117] | |
7 cannabinoids | Hemp products: seeds, cannabis-infused beer, energy drink, chocolates, roasted coffee and tea | Beer and energy drink (30 mL): SPE (1 mL hydrochloric acid 0.1 M/ 2 mL MeOH); chocolates, hemp seeds, and hemp tea (0.02 g): UAE (10 mL MeOH) | LC-MS | LOD: 2.19 ng/mL LOQ: 6.59 ng/mL/70.0–110% | [63] |
21 pyrrolizidine alkaloids | Oregano samples | 0.2 g sample; QuEChERS: 150 mg MgSO4 and 25 mg PSA | UHPLC-MS/MS | LOD: 0.1–7.5 µg/kg, LOQ: 0.5–25 µg/kg/77–96% | [65] |
14 pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides | Teas and weeds | 1 g sample; 0.1 M sulphuric acid; SPE: 1% formic acid, and 5 mL MeOH/4 mL MeOH + 0.5% ammonium hydroxide | UHPLC-MS/MS | LOD: 0.001–0.4 μg/kg LOQ: 1–5 μg/kg/ 68.6–110.2% | [66] |
Mycotoxins | |||||
Citrinin | Red yeast rice | LLE: 30 mg sample, 2 mL H2O–acetone 2:3 (V/V) | HPLC-FLD | 4 mg/kg/109.9% | [73] |
Nutraceutical green tea | SPE: 1 g sample, sorbent zirconia-coated silica and PSA | UHPLC-HRMS | LOQ: 0.2 μg/kg/97% | [74] | |
Cereals, food supplements and red yeast rice | MISPE: 0.5 g sample, molecularly imprinted polymer | HPLC-FLD | 550–1105 μg/kg/75.6–90.7% | [75] | |
Alternariol, alternariol monamethyl ether, tenuazonic acid, tentoxin, deoxynivalenol, and patulin | Cherry tomato, lettuce, and pakchoi | SPE: 1 g sample, HLB SPE cartridges (hydrophilic N-vinyl pyrrolidone and lipophilic diethyl benzene) | UHPLC-MS/MS | LOD: 0.05–3.0 μg/kg LOQ: 0.2–10.0 μg/kg 81.1–116% | [70] |
19 mycotoxins | Lotus seeds | QuEChERS: 1 g sample, 5 mL ACN 80% (v/v), 150 mg C18, and 150 mg MgSO4 anhydrous | UHPLC-MS/MS | 0.1–15.0 μg/kg/84.6–96.4% | [76] |
17 mycotoxins | Edible nuts | QuEChERS: 5 g sample, 10 mL ACN-formic acid (99.9/0.1 (v/v)); dSPE-EMR-lipid: 0.4 g NaCl, and 1.6 g anhydrous MgSO4 | LC-MS | 0.05–5 μg/kg/ 75–98% | [118] |
Chemical and industrial contaminants | |||||
PAHs | Nutritional supplements containing omega-3 and fish oil | FPSE: sol–gel phenyl/polydimethylsiloxane (PDMS)-coated FPSE membranes back-extracted with ACN | HPLC-UV | LOD: 2.16–2.50 ng/mL LOQ: 6.50–7.50 ng/mL/63.2–102.3% | [89] |
Sulphites | Herbal teas | dSPE: ACN and 0.1% acetic acid + 10 mM ammonium acetate | UPLC-MS/MS | 0.51–12.1 μg/kg/83.8–102.7% | [95] |
Sulphur dioxide | Stir-fried foods, dried fruits, preserved fruits, ginger, and shredded squid | 1 g sample; 25 mL NaOH 0.4 mM; derivatisation: 2 mL sample disodium hydrogen phosphate and potassium dihydrogen phosphate buffer (pH 5.5)/2.50 mL phthalaldehyde and 1.5 mL ammonium acetate | HPLC-FLD | LOD: 0.2 mg/kg LOQ: 0.7 mg/kg/82.32–105.08% | [97] |
Acrylamide | French fries, bakery biscuits, and branded biscuits | 1 g defatted sample; 10 mL H2O; 0.5 mL Carrez I and Carrez II solutions; filtration (0.45 μm cellulose acetate syringe filter paper) | HPLC-DAD | LOD: 3.733 ng/μL LOQ: 11.045 ng/μL/98–110% | [85] |
Coffee and coffee products | QuEChERS: 0.5 g roasted coffee or 2.5 g ready-to-drink (brewed) + 5 mL dichloromethane; SPE Carb/SCX/PSA cartridge; acrylamide residue transformed to 2,3-dibromoacrylamide (acrylamide-Br2) by KBr derivatisation (1 mL 15% (m/v)) and potassium bromate (100 μL 1.7% (m/v)) at acidic conditions (70 μL 10% (v/v) sulphuric acid); 0.22 μm PTFE filtration | UPLC-MS/MS | Roasted and instant coffees: LOD: 1.2 μg/kg LOQ: 4 μg/kg; Ready-to-drink coffees: LOD: 0.24 μg/kg LOQ: 0.8 μg/kg/ 99.3–102.2% | [86] | |
Polychlorinated dibenzo-p-dioxins and furans | Boiled eggs, crab meat, beef, sheep liver, herring, cod liver, salmon, and fish oil | Dichloromethane/n-hexane (1:1, v/v); acidic silica gel (44% sulphuric acid) to remove lipids and polar interfering substances | GC-MS/MS | LOQ: 0.005–0.101 ng/mL (GC-APCI-MS/MS) and 0.006–0.201 ng/mL (GC-EI-MS/MS) | [92] |
Glycidyl esters | Infant formulas and elderly milk powders | Transesterification by automation: 0.5 g sample, 2 g anhydrous sodium sulphate, and 2 mL distilled H2O; 10 mL hexane: ethanol (2:1, v/v); residue re-dissolved with 400 μL isooctane | GC-MS/MS | LOD: 0.8 μg/kg/91.7–111.3% | [87] |
Sodium iron chlorophyllin and sodium copper chlorophyllin | Candies | 0.1 N hydrochloric acid (5 mL), ultrasonication (50 °C, 10 min), dilution to 20 mL (MeOH); vortex mixing, centrifugation (10,000 rpm, 10 min), filter upper layer (0.2 μm)/HPLC-MS | UHPLC-MS | LOD/LOQ: 1.2; 4.1 mg/kg (SIC); 1.4; 4.8 mg/kg (SCC), | [119] |
4.1. Recent Developments and Future Perspectives in the Control of Food Safety Using Chromatographic Approaches
4.1.1. Multidimensional Chromatography
4.1.2. Miniaturisation of Chromatographic Architectures
4.1.3. Portable Chromatography Solutions and Chromatography-on-Chip
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Macready, A.L.; Hieke, S.; Klimczuk-Kochanska, M.; Szumial, S.; Vranken, L.; Grunert, K.G. Consumer trust in the food value chain and its impact on consumer confidence: A model for assessing consumer trust and evidence from a 5-country study in Europe. Food Policy 2020, 92, 101880. [Google Scholar] [CrossRef]
- Truong, V.; Conroy, D.M.; Lang, B. The trust paradox in food labelling: An exploration of consumers’ perceptions of certified vegetables. Food Qual. Prefer. 2021, 93, 104280. [Google Scholar] [CrossRef]
- Djekic, I.; Nikolic, A.; Mujcinovic, A.; Blazic, M.; Herljevic, D.; Goel, G.; Trafiałek, J.; Czarniecka-Skubina, E.; Guiné, R.; Gonçalves, J.C.; et al. How do consumers perceive food safety risks?—Results from a multi-country survey. Food Control 2022, 142, 109216. [Google Scholar] [CrossRef]
- Kantiani, L.; Llorca, M.; Sanchis, J.; Farre, M.; Barcelo, D. Emerging food contaminants: A review. Anal. Bioanal. Chem. 2010, 398, 2413–2427. [Google Scholar] [CrossRef] [PubMed]
- EFSA—European Food Safety Authority. Chemical Contaminants in Food and Feed. Available online: https://www.efsa.europa.eu/en/topics/topic/chemical-contaminants-food-feed (accessed on 27 October 2023).
- EFSA—European Food Safety Authority. About Us. Available online: https://www.efsa.europa.eu/en/about/about-efsa (accessed on 27 October 2023).
- EC—European Commission. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC Text with EEA Relevance; European Commission: Brussels, Belgium, 2005. [Google Scholar]
- EC—European Commission. Commission Regulation (EU) No 37/2010 of 22 December 2009 on Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Foodstuffs of Animal Origin (Text with EEA Relevance); European Commission: Brussels, Belgium, 2010. [Google Scholar]
- EC—European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance); European Commission: Brussels, Belgium, 2023. [Google Scholar]
- EC—European Commission. Rapid Alert System for Food and Feed (RASFF). Available online: https://food.ec.europa.eu/safety/rasff_en (accessed on 27 October 2023).
- EFSA—European Food Safety Authority; Aagaard, A.; Berny, P.; Chaton, P.-F.; Antia, A.L.; McVey, E.; Arena, M.; Fait, G.; Ippolito, A.; Linguadoca, A.; et al. Risk assessment for Birds and Mammals. EFSA J. 2023, 21, e07790. [Google Scholar] [CrossRef]
- Jimenez-Jimenez, S.; Casado, N.; Garcia, M.A.; Marina, M.L. Enantiomeric analysis of pyrethroids and organophosphorus insecticides. J. Chromatogr. A 2019, 1605, 360345. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, N.S.; Rovina, K.; Joseph, V.M. Classification, extraction and current analytical approaches for detection of pesticides in various food products. J. Consum. Prot. Food Saf. 2019, 14, 209–221. [Google Scholar] [CrossRef]
- EC—European Commission. Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Casado, N.; Gañán, J.; Morante-Zarcero, S.; Sierra, I. New Advanced Materials and Sorbent-Based Microextraction Techniques as Strategies in Sample Preparation to Improve the Determination of Natural Toxins in Food Samples. Molecules 2020, 25, 702. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority. Mycotoxins. Available online: https://www.efsa.europa.eu/en/topics/topic/mycotoxins (accessed on 27 October 2023).
- Codex Alimentarius Commission. Code of Practice for the Prevention and Reduction of Ochratoxin a Contamination in Coffee; CAC/RCP 69-2009; Codex Alimentarius Commission: Rome, Italy, 2009. [Google Scholar]
- Codex Alimentarius International Food Standards. Code of Practice for the Prevention and Reduction of Ochratoxin a Contamination; Codex Alimentarius Commission: Rome, Italy, 2013. [Google Scholar]
- Codex Alimentarius Commission. Code of Practice for the Prevention and Reduction of Ochratoxin a Contamination in Wine; CAC/RCP 63-2007; Codex Alimentarius Commission: Rome, Italy, 2007. [Google Scholar]
- Codex Alimentarius Commission. Code of Practice for the Prevention and Reduction of Patulin Contamination in Apple Juice and Apple Juice Ingredients in Other Beverages; CAC/RCP 50-2003; Codex Alimentarius Commission: Rome, Italy, 2003. [Google Scholar]
- EC—European Commission. Commission Regulation (EC) No 401/2006 of 23 February 2006 Laying Down the Methods of Sampling and Analysis for the Official Control of the Levels of Mycotoxins in Foodstuffs (Text with EEA Relevance); European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Daeseleire, E.; Van Pamel, E.; Van Poucke, C.; Croubels, S. Chapter 6—Veterinary Drug Residues in Foods. In Chemical Contaminants and Residues in Food, 2nd ed.; Schrenk, D., Cartus, A., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 117–153. [Google Scholar] [CrossRef]
- Jedziniak, P.; Szprengier-Juszkiewicz, T.; Olejnik, M.; Zmudzki, J. Determination of non-steroidal anti-inflammatory drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2010, 672, 85–92. [Google Scholar] [CrossRef]
- Sai, F.; Hong, M.; Yunfeng, Z.; Huijing, C.; Yongning, W. Simultaneous Detection of Residues of 25 β2-Agonists and 23 β-Blockers in Animal Foods by High-Performance Liquid Chromatography Coupled with Linear Ion Trap Mass Spectrometry. J. Agric. Food. Chem. 2012, 60, 1898–1905. [Google Scholar] [CrossRef]
- Robert, C.; Gillard, N.; Brasseur, P.Y.; Pierret, G.; Ralet, N.; Dubois, M.; Delahaut, P. Rapid multi-residue and multi-class qualitative screening for veterinary drugs in foods of animal origin by UHPLC-MS/MS. Food Addit. Contam. Part A 2013, 30, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Casado, N.; Gañán, J.; Morante-Zarcero, S.; Sierra, I. Occurrence of Pyrrolizidines and Other Alkaloids of Plant Origin in Foods. In Encyclopedia of Food Safety, 2nd ed.; Smithers, G.W., Ed.; Academic Press: Oxford, UK, 2024; pp. 518–528. [Google Scholar] [CrossRef]
- Casado, N.; Casado-Hidalgo, G.; González-Gómez, L.; Morante-Zarcero, S.; Sierra, I. Insight into the Impact of Food Processing and Culinary Preparations on the Stability and Content of Plant Alkaloids Considered as Natural Food Contaminants. Appl. Sci. 2023, 13, 1704. [Google Scholar] [CrossRef]
- Casado, N.; Morante-Zarcero, S.; Sierra, I. The concerning food safety issue of pyrrolizidine alkaloids: An overview. Trends Food Sci. Technol. 2022, 120, 123–139. [Google Scholar] [CrossRef]
- González-Gómez, L.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Occurrence and Chemistry of Tropane Alkaloids in Foods, with a Focus on Sample Analysis Methods: A Review on Recent Trends and Technological Advances. Foods 2022, 11, 407. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain. Scientific opinion on the risks for human health related to the presence of tetrahydrocannabinol (THC) in milk and other food of animal origin. EFSA J. 2015, 13, 4141. [Google Scholar]
- EC—European Commission. Regulation (EU) No 1307/2013 of the European Parliament and of the Council of 17 December 2013 Establishing Rules for Direct Payments to Farmers under Support Schemes within the Framework of the Common Agricultural Policy and Repealing Council Regulation (EC) No 637/2008 and Council Regulation (EC) No 73/2009; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Gerssen, A.; Pol-Hofstad, I.E.; Poelman, M.; Mulder, P.P.J.; Van den Top, H.J.; De Boer, J. Marine Toxins: Chemistry, Toxicity, Occurrence and Detection, with Special Reference to the Dutch Situation. Toxins 2010, 2, 878–904. [Google Scholar] [CrossRef]
- EFSA—European Food Safety Authority. Process Contaminants. Available online: https://www.efsa.europa.eu/en/topics/topic/process-contaminants (accessed on 27 October 2023).
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef]
- Hoogenboom, L.A.P. Scientific opinion: Risks for human health related to the presence of 3-and 2-monochloropropanediol (MCPD), and their fatty acid esters, and glycidyl fatty acid esters in food. EFSA J. 2016, 14, e04426. [Google Scholar]
- EC—European Commission. Commission Regulation (EU) 2017/2158 of 20 November 2017 Establishing Mitigation Measures and Benchmark Levels for the Reduction of the Presence of Acrylamide in Food (Text with EEA Relevance); European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Codex Alimentarius Commission. Code of Practice for the Reduction of Contamination of Food with Polycyclic Aromatic Hydrocarbons (PAH) from Smoking and Direct Drying Processes; CAC/RCP 68-2009; Codex Alimentarius Commission: Rome, Italy, 2009. [Google Scholar]
- EFSA—European Food Safety Authority. Mineral Oil Hydrocarbons in Food. Available online: https://www.efsa.europa.eu/en/infographics/mineral-oil-hydrocarbons-food (accessed on 27 October 2023).
- EFSA Panel on Contaminants in the Food Chain; Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J. 2018, 16, e05333. [Google Scholar]
- EFSA—European Food Safety Authority. Dioxins and PCBs. Available online: https://www.efsa.europa.eu/en/topics/topic/dioxins-and-pcbs (accessed on 27 October 2023).
- EFSA Panel on Food Additives and Flavourings; Younes, M.; Aquilina, G.; Castle, L.; Engel, K.H.; Fowler, P.J.; Frutos Fernandez, M.J.; Fürst, P.; Gundert-Remy, U.; Gürtler, R. Follow-up of the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228). EFSA J. 2022, 20, e07594. [Google Scholar]
- EC—European Commission. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 Text with EEA Relevance; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- Bustamante-Rangel, M.; Delgado-Zamarreno, M.M.; Rodriguez-Gonzalo, E. Simple method for the determination of anthelmintic drugs in milk intended for human consumption using liquid chromatography-tandem mass spectrometry. J. Sci. Food Agric. 2022, 102, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.M.; Xu, Y.; He, P.; Zareef, M.; Li, H.; Chen, Q. Simultaneous determination of benzimidazole fungicides in food using signal optimized label-free HAu/Ag NS-SERS sensor. Food Chem. 2022, 397, 133755. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, S.; Ma, W.; Li, G.; Tu, M.; Ma, Z.; Zhang, Q.; Li, H.; Li, X. Simultaneous Determination of Neonicotinoid and Carbamate Pesticides in Freeze-Dried Cabbage by Modified QuEChERS and Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry. Foods 2023, 12, 699. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Feng, T.; Wang, J.; Hao, L.; Wang, C.; Wu, Q.; Wang, Z. Preparation of magnetic porous covalent triazine-based organic polymer for the extraction of carbamates prior to high performance liquid chromatography-mass spectrometric detection. J. Chromatogr. A 2019, 1602, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Giglio, A.; Vommaro, M.L. Dinitroaniline herbicides: A comprehensive review of toxicity and side effects on animal non-target organisms. Environ. Sci. Pollut. Res. 2022, 29, 76687–76711. [Google Scholar] [CrossRef] [PubMed]
- Kovida; Sharma, V.; Koner, A.L. Rapid on-site and naked-eye detection of common nitro pesticides with ionic liquids. Analyst 2020, 145, 4335–4340. [Google Scholar] [CrossRef] [PubMed]
- Mardani, A.; Torbati, M.; Farajzadeh, M.A.; Mohebbi, A.; Mogaddam, M.R.A. Combination of homogeneous liquid–liquid extraction and dispersive liquid–liquid microextraction for extraction of some organochlorine pesticides from cocoa. Int. J. Environ. Anal. Chem. 2022, 102, 5092–5105. [Google Scholar] [CrossRef]
- Pang, Y.; Zang, X.; Li, H.; Liu, J.; Chang, Q.; Zhang, S.; Wang, C.; Wang, Z. Solid-phase microextraction of organophosphorous pesticides from food samples with a nitrogen-doped porous carbon derived from g-C(3)N(4) templated MOF as the fiber coating. J. Hazard. Mater. 2020, 384, 121430. [Google Scholar] [CrossRef]
- Moinfar, S.; Khodayari, A.; Abdulrahman, S.S.; Aghaei, A.; Sohrabnezhad, S.; Jamil, L.A. Development of a SPE/GC–MS method for the determination of organophosphorus pesticides in food samples using syringe filters packed by GNP/MIL-101(Cr) nanocomposite. Food Chem. 2022, 371, 130997. [Google Scholar] [CrossRef]
- Deng, W.; Yu, L.; Li, X.; Chen, J.; Wang, X.; Deng, Z.; Xiao, Y. Hexafluoroisopropanol-based hydrophobic deep eutectic solvents for dispersive liquid-liquid microextraction of pyrethroids in tea beverages and fruit juices. Food Chem. 2019, 274, 891–899. [Google Scholar] [CrossRef]
- Manousi, N.; Kabir, A.; Furton, K.G.; Zachariadis, G.A.; Rosenberg, E. Expanding the applicability of magnet integrated fabric phase sorptive extraction in food analysis: Extraction of triazine herbicides from herbal infusion samples. Microchem. J. 2022, 179, 107524. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, T.; Zhang, Y.; Ma, J.; Tuo, Y. Preparation and evaluation of a chitosan modified biochar as an efficient adsorbent for pipette tip-solid phase extraction of triazine herbicides from rice. Food Chem. 2022, 396, 133716. [Google Scholar] [CrossRef] [PubMed]
- Ballah, F.M.; Islam, M.S.; Rana, M.L.; Ullah, M.A.; Ferdous, F.B.; Neloy, F.H.; Ievy, S.; Sobur, M.A.; Rahman, A.T.; Khatun, M.M.; et al. Virulence Determinants and Methicillin Resistance in Biofilm-Forming Staphylococcus aureus from Various Food Sources in Bangladesh. Antibiotics 2022, 11, 1666. [Google Scholar] [CrossRef] [PubMed]
- Guironnet, A.; Wiest, L.; Vulliet, E. Improvement of the QuEChERS extraction step by matrix-dispersion effect and application on beta-lactams analysis in wastewater sludge by LC-MS/MS. Talanta 2022, 237, 122923. [Google Scholar] [CrossRef] [PubMed]
- Fei, Z.; Chen, B.; Wei, X.; Lian, L.; Wang, X.; Lou, D. NiO/ZnO-Coated Carbon Microspheres for Dispersive Solid-Phase Extraction (DSPE) of Malachite Green and Crystal Violet in Aquatic Food Products with Determination by Ultra-High-Performance Liquid Chromatography (UPLC). Anal. Lett. 2022, 56, 1192–1205. [Google Scholar] [CrossRef]
- Lu, H.-z.; Chen, Z.-r.; Xu, S.-f. Surface Molecularly Imprinted Polymers on Multi-Function MnO2-Decorated Magnetic Carbon Nanotubes for Dispersive Solid-Phase Extraction of Three Fluoroquinolones from Milk Samples. ACS Food Sci. Technol. 2022, 2, 1612–1621. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Xie, D.; Lai, H.; Qiu, Q.; Ma, X. Optimized synthesis of molecularly imprinted polymers coated magnetic UIO-66 MOFs for simultaneous specific removal and determination of multi types of macrolide antibiotics in water. J. Environ. Chem. Eng. 2022, 10, 108094. [Google Scholar] [CrossRef]
- Varga, I.; Luburić, Đ.B.; Varenina, I.; Kolanović, B.S.; Čalopek, B.; Sedak, M.; Vratarić, D.; Bilandžić, N.; Đokić, M. Residue analysis of nitrofuran metabolites in five food commodities from Croatia using ultra-high performance liquid chromatography–tandem mass spectrometry. J. Food Compos. Anal. 2023, 123, 105614. [Google Scholar] [CrossRef]
- Ning, Y.; Ye, Y.; Liao, W.; Xu, Y.; Wang, W.; Wang, A.-j. Triazine-based porous organic polymer as pipette tip solid-phase extraction adsorbent coupled with HPLC for the determination of sulfonamide residues in food samples. Food Chem. 2022, 397, 133831. [Google Scholar] [CrossRef]
- Tang, Y.; Huang, X.; Wang, X.; Wang, C.; Tao, H.; Wu, Y. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem. 2022, 366, 130560. [Google Scholar] [CrossRef]
- Christodoulou, M.C.; Christou, A.; Stavrou, I.J.; Kapnissi-Christodoulou, C.P. Evaluation of different extraction procedures for the quantification of seven cannabinoids in cannabis-based edibles by the use of LC-MS. J. Food Compos. Anal. 2023, 115, 104915. [Google Scholar] [CrossRef]
- Nyland, C.R.; Moyer, D.C. Regulating for Safety: Cannabidiol Dose in Food: A Review. J. Food Prot. 2022, 85, 1355–1369. [Google Scholar] [CrossRef] [PubMed]
- Izcara, S.; Casado, N.; Morante-Zarcero, S.; Sierra, I. A Miniaturized QuEChERS Method Combined with Ultrahigh Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Analysis of Pyrrolizidine Alkaloids in Oregano Samples. Foods 2020, 9, 1319. [Google Scholar] [CrossRef]
- Han, H.; Jiang, C.; Wang, C.; Wang, Z.; Chai, Y.; Zhang, X.; Liu, X.; Lu, C.; Chen, H. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food Control 2022, 132, 108518. [Google Scholar] [CrossRef]
- González-Gómez, L.; Morante-Zarcero, S.; Pereira, J.A.M.; Câmara, J.S.; Sierra, I. Improved Analytical Approach for Determination of Tropane Alkaloids in Leafy Vegetables Based on µ-QuEChERS Combined with HPLC-MS/MS. Toxins 2022, 14, 650. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, J.M.; Schwabe, R.F. Experimental Hepatocarcinogenesis. In Pathobiology of Human Disease; McManus, L.M., Mitchell, R.N., Eds.; Academic Press: San Diego, CA, USA, 2014; pp. 1866–1880. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Nepovimova, E.; Long, M.; Wu, W.; Kuca, K. Progress on the detoxification of aflatoxin B1 using natural anti-oxidants. Food Chem. Toxicol. 2022, 169, 113417. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Xian, Y.; Xiao, K.; Wu, Y.; Zhu, L.; He, J. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS. Food Chem. 2019, 274, 471–479. [Google Scholar] [CrossRef]
- Islam, M.T.; Martorell, M.; Gonzalez-Contreras, C.; Villagran, M.; Mardones, L.; Tynybekov, B.; Docea, A.O.; Abdull Razis, A.F.; Modu, B.; Calina, D.; et al. An updated overview of anticancer effects of alternariol and its derivatives: Underlying molecular mechanisms. Front. Pharmacol. 2023, 14, 1099380. [Google Scholar] [CrossRef]
- Puvača, N.; Avantaggiato, G.; Merkuri, J.; Vuković, G.; Bursić, V.; Cara, M. Occurrence and Determination of Alternaria Mycotoxins Alternariol, Alternariol Monomethyl Ether, and Tentoxin in Wheat Grains by QuEChERS Method. Toxins 2022, 14, 791. [Google Scholar] [CrossRef]
- Klingelhofer, I.; Morlock, G.E. Lovastatin in lactone and hydroxy acid forms and citrinin in red yeast rice powders analyzed by HPTLC-UV/FLD. Anal. Bioanal. Chem. 2019, 411, 6655–6665. [Google Scholar] [CrossRef]
- Jia, W.; Shi, L.; Zhang, F.; Fan, C.; Chang, J.; Chu, X. Multiplexing data independent untargeted workflows for mycotoxins screening on a quadrupole-Orbitrap high resolution mass spectrometry platform. Food Chem. 2019, 278, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Lhotská, I.; Kholová, A.; Machyňáková, A.; Hroboňová, K.; Solich, P.; Švec, F.; Šatínský, D. Preparation of citrinin-selective molecularly imprinted polymer and its use for on-line solid-phase extraction coupled to liquid chromatography. Anal. Bioanal. Chem. 2019, 411, 2395–2404. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Liu, X.; Liao, X.; Shi, L.; Zhang, S.; Lu, J.; Zhou, L.; Kong, W. Simultaneous determination of 19 mycotoxins in lotus seed using a multimycotoxin UFLC-MS/MS method. J. Pharm. Pharmacol. 2019, 71, 1172–1183. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, A.R.; Mohan, K.; Karthick Rajan, D.; Pillay, A.A.; Palanisami, T.; Sathishkumar, P.; Conterno, L. Distribution, toxicity, interactive effects, and detection of ochratoxin and deoxynivalenol in food: A review. Food Chem. 2022, 378, 131978. [Google Scholar] [CrossRef] [PubMed]
- Carbonell-Rozas, L.; Gámiz-Gracia, L.; Lara, F.J.; García-Campaña, A.M. Determination of the Main Ergot Alkaloids and Their Epimers in Oat-Based Functional Foods by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry. Molecules 2021, 26, 3717. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Arbabzadeh, O.; Khaaki, P.; Majidi, M.R.; Khataee, A.; Woo Joo, S. Emerging electrochemical sensing and biosensing approaches for detection of Fumonisins in food samples. Crit. Rev. Food Sci. Nutr. 2022, 62, 8761–8776. [Google Scholar] [CrossRef]
- Wang, L.; Hua, X.; Shi, J.; Jing, N.; Ji, T.; Lv, B.; Liu, L.; Chen, Y. Ochratoxin A: Occurrence and recent advances in detoxification. Toxicon 2022, 210, 11–18. [Google Scholar] [CrossRef]
- Bacha, S.A.S.; Li, Y.; Nie, J.; Xu, G.; Han, L.; Farooq, S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. Front. Plant Sci. 2023, 14, 1139757. [Google Scholar] [CrossRef]
- Kharayat, B.S.; Singh, Y. Chapter 13—Mycotoxins in Foods: Mycotoxicoses, Detection, and Management. In Microbial Contamination and Food Degradation; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 395–421. [Google Scholar] [CrossRef]
- Meneely, J.; Greer, B.; Kolawole, O.; Elliott, C. T-2 and HT-2 Toxins: Toxicity, Occurrence and Analysis: A Review. Toxins 2023, 15, 481. [Google Scholar] [CrossRef]
- Kang, M.; Yao, Y.; Yuan, B.; Zhang, S.; Oderinde, O.; Zhang, Z. A sensitive bimetallic copper/bismuth metal-organic frameworks-based aptasensors for zearalenone detection in foodstuffs. Food Chem. 2024, 437, 137827. [Google Scholar] [CrossRef]
- Verma, V.; Yadav, N. Acrylamide content in starch based commercial foods by using high performance liquid chromatography and its association with browning index. Curr. Res. Food Sci. 2022, 5, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cai, Z.; Zhang, N.; Hu, Z.; Zhang, J.; Ying, Y.; Zhao, Y.; Feng, L.; Zhang, J.; Wu, P. A novel single step solid-phase extraction combined with bromine derivatization method for rapid determination of acrylamide in coffee and its products by stable isotope dilution ultra-performance liquid chromatography tandem triple quadrupole electrospray ionization mass spectrometry. Food Chem. 2022, 388, 132977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Olajide, T.M.; Cao, W. Automated methods for the determination of 2- and 3-monochloropropanediol (MCPD) esters and glycidyl esters in milk powder products by gas chromatography-tandem mass spectrometry (GC-MS/MS) and risk assessment. J. Food Compos. Anal. 2023, 116, 105084. [Google Scholar] [CrossRef]
- Goh, K.M.; Wong, Y.H.; Tan, C.P.; Nyam, K.L. A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Curr. Res. Food Sci. 2021, 4, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Gazioglu, I.; Zengin, O.S.; Tartaglia, A.; Locatelli, M.; Furton, K.G.; Kabir, A. Determination of Polycyclic Aromatic Hydrocarbons in Nutritional Supplements by Fabric Phase Sorptive Extraction (FPSE) with High-Performance Liquid Chromatography (HPLC) with Fluorescence Detection. Anal. Lett. 2020, 54, 1683–1696. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Y.; Huang, T.; Yu, Y.; Bassey, A.P.; Huang, M. The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control 2022, 141, 109194. [Google Scholar] [CrossRef]
- Ramli, N.A.S.; Roslan, N.A.; Abdullah, F.; Bilal, B.; Ghazali, R.; Abd Razak, R.A.; Ahmad Tarmizi, A.H. Determination of process contaminants 2- and 3-MCPD esters and glycidyl esters in palm-based glycerol by indirect analysis using GC-MS. Food Addit. Contam. Part A 2023, 40, 1307–1321. [Google Scholar] [CrossRef] [PubMed]
- Lyu, B.; Zhang, X.; Li, J.; Zhang, L.; Zhong, Y.; Wu, Y. Determination of polychlorinated dibenzo-p-dioxins and furans in food samples by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) and comparison with gas chromatography-high resolution mass spectrometry (GC-HRMS). J. Food Compos. Anal. 2023, 115, 104947. [Google Scholar] [CrossRef]
- Fernandes, A.R.; Falandysz, J. Polybrominated dibenzo-p-dioxins and furans (PBDD/Fs): Contamination in food, humans and dietary exposure. Sci. Total Environ. 2021, 761, 143191. [Google Scholar] [CrossRef]
- Bauwens, G.; Conchione, C.; Sdrigotti, N.; Moret, S.; Purcaro, G. Quantification and characterization of mineral oil in fish feed by liquid chromatography-gas chromatography-flame ionization detector and liquid chromatography-comprehensive multidimensional gas chromatography-time-of-flight mass spectrometer/flame ionization detector. J. Chromatogr. A 2022, 1677, 463208. [Google Scholar] [CrossRef]
- Yang, L.; Hu, G.; Huang, Y.; Wang, C.; Liu, X.; Lu, C.; Chen, H.; Zhang, J.; Ma, G. Simple and sensitive determination of sulfites in Chinese herbal teas by ultrahigh-performance liquid chromatography tandem mass spectrometry. Anal. Methods 2022, 14, 2849–2856. [Google Scholar] [CrossRef] [PubMed]
- Bijad, M.; Hojjati-Najafabadi, A.; Asari-Bami, H.; Habibzadeh, S.; Amini, I.; Fazeli, F. An overview of modified sensors with focus on electrochemical sensing of sulfite in food samples. Eurasian Chem. Commun. 2021, 3, 116–138. [Google Scholar] [CrossRef]
- Mu, L.; Li, G.; Kang, Q.; Xu, Y.; Fu, Y.; Ye, L. Determination of sulfur dioxide in food by liquid chromatography with pre-column derivatization. Food Control 2022, 132, 108500. [Google Scholar] [CrossRef]
- Wu, Y.; Han, L.; Wu, X.; Jiang, W.; Liao, H.; Xu, Z.; Pan, C. Trends and perspectives on general Pesticide analytical chemistry. Adv. Agrochem 2022, 1, 113–124. [Google Scholar] [CrossRef]
- Yang, B.; Ma, W.; Wang, S.; Shi, L.; Li, X.; Ma, Z.; Zhang, Q.; Li, H. Determination of eight neonicotinoid insecticides in Chinese cabbage using a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry. Food Chem. 2022, 387, 132935. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, J.; Feng, J.; Xiang, Y.; Zhu, J.; Li, Y.; Yu, Y.; Li, Y. Core-shell structured magnetic covalent-organic frameworks for rapid extraction and preconcentration of okadaic acid in seawater and shellfish followed with LC-MS/MS quantification. Food Chem. 2022, 374, 131778. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, A.R.; Aramesh, N.; Liu, Z.; Chen, C.; Shen, W.; Tang, S. Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Crit. Rev. Anal. Chem. 2022, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, X.; Bai, Y.; Liu, H. Applications of metal-organic frameworks as advanced sorbents in biomacromolecules sample preparation. TrAC Trends Anal. Chem. 2018, 109, 154–162. [Google Scholar] [CrossRef]
- Montiel-León, J.M.; Duy, S.V.; Munoz, G.; Verner, M.A.; Hendawi, M.Y.; Moya, H.; Amyot, M.; Sauvé, S. Occurrence of pesticides in fruits and vegetables from organic and conventional agriculture by QuEChERS extraction liquid chromatography tandem mass spectrometry. Food Control 2019, 104, 74–82. [Google Scholar] [CrossRef]
- Li, G.; Wen, A.; Liu, J.; Wu, D.; Wu, Y. Facile extraction and determination of organophosphorus pesticides in vegetables via magnetic functionalized covalent organic framework nanocomposites. Food Chem. 2021, 337, 127974. [Google Scholar] [CrossRef]
- Heidari, H.; Ghanbari-Rad, S.; Habibi, E. Optimization deep eutectic solvent-based ultrasound-assisted liquid-liquid microextraction by using the desirability function approach for extraction and preconcentration of organophosphorus pesticides from fruit juice samples. J. Food Compos. Anal. 2020, 87, 103389. [Google Scholar] [CrossRef]
- Ma, W.; Yang, B.; Li, J.; Li, X. Amino-functional metal–organic framework as a general applicable adsorbent for simultaneous enrichment of nine neonicotinoids. Chem. Eng. J. 2022, 434, 134629. [Google Scholar] [CrossRef]
- Ji, B.; Yang, L.; Ren, C.; Xu, X.; Zhao, W.; Yang, Y.; Xu, G.; Zhao, D.; Bai, Y. A modified QuEChERS method based on a reduced graphene oxide-coated melamine sponge for multiresidue analysis of veterinary drugs in mutton by UPLC-MS/MS. Food Chem. 2023, 433, 137376. [Google Scholar] [CrossRef]
- Guo, X.; Tian, H.; Yang, F.; Fan, S.; Zhang, J.; Ma, J.; Ai, L.; Zhang, Y. Rapid determination of 103 common veterinary drug residues in milk and dairy products by ultra performance liquid chromatography tandem mass spectrometry. Front. Nutr. 2022, 9, 879518. [Google Scholar] [CrossRef]
- Al Tamim, A.; Alzahrani, S.; Al-Subaie, S.; Almutairi, M.A.; Al Jaber, A.; Alowaifeer, A.M. Fast simultaneous determination of 23 veterinary drug residues in fish, poultry, and red meat by liquid chromatography/tandem mass spectrometry. Arab. J. Chem. 2022, 15, 104116. [Google Scholar] [CrossRef]
- Wen, L.; Liu, L.; Wang, X.; Wang, M.L.; Lin, J.M.; Zhao, R.S. Spherical mesoporous covalent organic framework as a solid-phase extraction adsorbent for the ultrasensitive determination of sulfonamides in food and water samples by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1625, 461275. [Google Scholar] [CrossRef] [PubMed]
- Gajda, A.; Szymanek-Bany, I.; Nowacka-Kozak, E.; Gbylik-Sikorska, M. Risk to Public Health Regarding Doxycycline Residues in Chicken Claws. J. Agric. Food. Chem. 2022, 70, 2495–2500. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Xu, X.; Liu, Z.; Xue, S.; Zhang, L. Novel functionalized magnetic ionic liquid green separation technology coupled with high performance liquid chromatography: A rapid approach for determination of estrogens in milk and cosmetics. Talanta 2020, 209, 120542. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shi, X.; Zhao, Q.; Sun, A.; Li, D.; Zhao, J. Determination of lipophilic marine toxins in fresh and processed shellfish using modified QuEChERS and ultra-high-performance liquid chromatography-tandem mass spectrometry. Food Chem. 2019, 272, 427–433. [Google Scholar] [CrossRef]
- Koike, H.; Kanda, M.; Hayashi, H.; Matsushima, Y.; Ohba, Y.; Nakagawa, Y.; Nagano, C.; Sekimura, K.; Hirai, A.; Shindo, T.; et al. Quantification of staphylococcal enterotoxin type A in cow milk by using a stable isotope-labelled peptide via liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2019, 36, 1098–1108. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; Miguéns, N.; Rodríguez, I.; Botana, L.M. LC–MS/MS Analysis of the Emerging Toxin Pinnatoxin-G and High Levels of Esterified OA Group Toxins in Galician Commercial Mussels. Toxins 2019, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Kouti, E.; Tsiasioti, A.; Zacharis, C.K.; Tzanavaras, P.D. Specific determination of histamine in cheese and cured meat products by ion chromatography coupled to fluorimetric detection. Microchem. J. 2021, 168, 106513. [Google Scholar] [CrossRef]
- Kounnoun, A.; El Maadoud, M.; Cacciola, F.; Mondello, L.; Bougtaib, H.; Alahlah, N.; Amajoud, N.; El Baaboua, A.; Louajri, A. Development and Validation of a High-Performance Liquid Chromatography Method for the Determination of Histamine in Fish Samples Using Fluorescence Detection with Pre-column Derivatization. Chromatographia 2020, 83, 893–901. [Google Scholar] [CrossRef]
- Alcantara-Duran, J.; Moreno-Gonzalez, D.; Garcia-Reyes, J.F.; Molina-Diaz, A. Use of a modified QuEChERS method for the determination of mycotoxin residues in edible nuts by nano flow liquid chromatography high resolution mass spectrometry. Food Chem. 2019, 279, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.S.; Sim, S.; Yamaguchi, T.; Park, J.; Lee, C.; Kim, M.; Lee, G.; Yun, S.S.; Lim, H.S.; Suh, H.J. Simultaneous determination of sodium iron chlorophyllin and sodium copper chlorophyllin in food using high-performance liquid chromatography and ultra-performance liquid chromatography-mass spectrometry. Food Chem. 2019, 276, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, S.; Celano, R.; Piccinelli, A.L.; Serio, S.; Russo, M.; Rastrelli, L. An analytical platform for the screening and identification of pyrrolizidine alkaloids in food matrices with high risk of contamination. Food Chem. 2023, 406, 135058. [Google Scholar] [CrossRef]
- Steiner, D.; Sulyok, M.; Malachová, A.; Mueller, A.; Krska, R. Realizing the simultaneous liquid chromatography-tandem mass spectrometry based quantification of >1200 biotoxins, pesticides and veterinary drugs in complex feed. J. Chromatogr. A 2020, 1629, 461502. [Google Scholar] [CrossRef]
- Han, L.; Sapozhnikova, Y. Semi-automated high-throughput method for residual analysis of 302 pesticides and environmental contaminants in catfish by fast low-pressure GC-MS/MS and UHPLC-MS/MS. Food Chem. 2020, 319, 126592. [Google Scholar] [CrossRef]
- Fialkov, A.B.; Lehotay, S.J.; Amirav, A. Less than one minute low-pressure gas chromatography—Mass spectrometry. J. Chromatogr. A 2020, 1612, 460691. [Google Scholar] [CrossRef]
- Schanzer, S.; Kroner, E.; Wibbelt, G.; Koch, M.; Kiefer, A.; Bracher, F.; Muller, C. Miniaturized multiresidue method for the analysis of pesticides and persistent organic pollutants in non-target wildlife animal liver tissues using GC-MS/MS. Chemosphere 2021, 279, 130434. [Google Scholar] [CrossRef]
- Patyra, E.; Kwiatek, K. Analytical capabilities of micellar liquid chromatography and application to residue and contaminant analysis: A review. J. Sep. Sci. 2021, 44, 2206–2220. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, D.; Fouad, M.M. Application of NEMI, Analytical Eco-Scale and GAPI tools for greenness assessment of three developed chromatographic methods for quantification of sulfadiazine and trimethoprim in bovine meat and chicken muscles: Comparison to greenness profile of reported HPLC methods. Microchem. J. 2020, 157, 104873. [Google Scholar] [CrossRef]
- Espinosa, F.J.; Toledano, R.M.; Villén, J.; Cortés, J.M.; Vázquez, A.M. TOTAD interface: A review of its application for LVI and LC-GC. Rev. Anal. Chem. 2021, 40, 253–271. [Google Scholar] [CrossRef]
- Arena, K.; Mandolfino, F.; Cacciola, F.; Dugo, P.; Mondello, L. Multidimensional liquid chromatography approaches for analysis of food contaminants. J. Sep. Sci. 2021, 44, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Stilo, F.; Bicchi, C.; Reichenbach, S.E.; Cordero, C. Comprehensive two-dimensional gas chromatography as a boosting technology in food-omic investigations. J. Sep. Sci. 2021, 44, 1592–1611. [Google Scholar] [CrossRef] [PubMed]
- Campone, L.; Rizzo, S.; Piccinelli, A.L.; Celano, R.; Pagano, I.; Russo, M.; Labra, M.; Rastrelli, L. Determination of mycotoxins in beer by multi heart-cutting two-dimensional liquid chromatography tandem mass spectrometry method. Food Chem. 2020, 318, 126496. [Google Scholar] [CrossRef]
- Bogdanova, E.; Pugajeva, I.; Reinholds, I.; Bartkevics, V. Two-dimensional liquid chromatography—High resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in Pu-erh tea. J. Chromatogr. A 2020, 1622, 461145. [Google Scholar] [CrossRef]
- Acevedo, M.S.M.; Gama, M.R.; Batista, A.D.; Rocha, F.R. Two-dimensional separation by sequential injection chromatography. J. Chromatogr. A 2020, 1626, 461365. [Google Scholar] [CrossRef]
- Whiting, J.J.; Myers, E.; Manginell, R.P.; Moorman, M.W.; Anderson, J.; Fix, C.S.; Washburn, C.; Staton, A.; Porter, D.; Graf, D. A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph. Lab Chip 2019, 19, 1633–1643. [Google Scholar] [CrossRef]
- Keçili, R.; Hussain, C.M. Green micro total analysis systems (GμTAS) for environmental samples. Trends Environ. Anal. Chem. 2021, 31, e00128. [Google Scholar] [CrossRef]
- Goyal, S.; Sharma, R.; Singh, J.; Asadnia, M. Green Chromatography Techniques. In Green Chemical Analysis and Sample Preparations: Procedures, Instrumentation, Data Metrics, and Sustainability; El-Maghrabey, M.H., Sivasankar, V., El-Shaheny, R.N., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 379–432. [Google Scholar] [CrossRef]
- Chullasat, K.; Huang, Z.Z.; Bunkoed, O.; Kanatharana, P.; Lee, H.K. Bubble-in-drop microextraction of carbamate pesticides followed by gas chromatography-mass spectrometric analysis. Microchem. J. 2020, 155, 104666. [Google Scholar] [CrossRef]
- Liao, W.; Zhao, X.; Lu, H.-T.; Byambadorj, T.; Qin, Y.; Gianchandani, Y.B. Progressive Cellular Architecture in Microscale Gas Chromatography for Broad Chemical Analyses. Sensors 2021, 21, 3089. [Google Scholar] [CrossRef]
- Fedorenko, D.; Bartkevics, V. Recent Applications of Nano-Liquid Chromatography in Food Safety and Environmental Monitoring: A Review. Crit. Rev. Anal. Chem. 2023, 53, 98–122. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, D.; Cutillas, V.; Hernando, M.D.; Alcántara-Durán, J.; García-Reyes, J.F.; Molina-Díaz, A. Quantitative determination of pesticide residues in specific parts of bee specimens by nanoflow liquid chromatography high resolution mass spectrometry. Sci. Total Environ. 2020, 715, 137005. [Google Scholar] [CrossRef] [PubMed]
- Jansons, M.; Fedorenko, D.; Pavlenko, R.; Berzina, Z.; Bartkevics, V. Nanoflow liquid chromatography mass spectrometry method for quantitative analysis and target ion screening of pyrrolizidine alkaloids in honey, tea, herbal tinctures, and milk. J. Chromatogr. A 2022, 1676, 463269. [Google Scholar] [CrossRef] [PubMed]
- Chatzimichail, S.; Rahimi, F.; Saifuddin, A.; Surman, A.J.; Taylor-Robinson, S.D.; Salehi-Reyhani, A. Hand-portable HPLC with broadband spectral detection enables analysis of complex polycyclic aromatic hydrocarbon mixtures. Commun. Chem. 2021, 4, 17. [Google Scholar] [CrossRef]
- Svensson, K.; Weise, C.; Westphal, H.; Södergren, S.; Belder, D.; Hjort, K. Coupling microchip pressure regulators with chipHPLC as a step toward fully portable analysis system. Sens. Actuators B Chem. 2023, 385, 133732. [Google Scholar] [CrossRef]
- Liu, C.C.; Ko, C.H.; Wang, Y.N.; Fu, L.M.; Lee, S.Z. Rapid detection of artificial sweeteners in food using microfluidic chromatography detection system. Chem. Eng. J. 2021, 425, 131528. [Google Scholar] [CrossRef]
- Schade, F.; Schwack, W.; Demirbas, Y.; Morlock, G.E. Open-source all-in-one LabToGo Office Chromatography. Anal. Chim. Acta 2021, 1174, 338702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casado, N.; Berenguer, C.V.; Câmara, J.S.; Pereira, J.A.M. What Are We Eating? Surveying the Presence of Toxic Molecules in the Food Supply Chain Using Chromatographic Approaches. Molecules 2024, 29, 579. https://doi.org/10.3390/molecules29030579
Casado N, Berenguer CV, Câmara JS, Pereira JAM. What Are We Eating? Surveying the Presence of Toxic Molecules in the Food Supply Chain Using Chromatographic Approaches. Molecules. 2024; 29(3):579. https://doi.org/10.3390/molecules29030579
Chicago/Turabian StyleCasado, Natalia, Cristina V. Berenguer, José S. Câmara, and Jorge A. M. Pereira. 2024. "What Are We Eating? Surveying the Presence of Toxic Molecules in the Food Supply Chain Using Chromatographic Approaches" Molecules 29, no. 3: 579. https://doi.org/10.3390/molecules29030579
APA StyleCasado, N., Berenguer, C. V., Câmara, J. S., & Pereira, J. A. M. (2024). What Are We Eating? Surveying the Presence of Toxic Molecules in the Food Supply Chain Using Chromatographic Approaches. Molecules, 29(3), 579. https://doi.org/10.3390/molecules29030579