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Abstract: Hypothalamic mTORC1 signaling is involved in nutrient sensing. Neurons that express
the agouti-related protein (AgRP) are activated by food restriction and integrate interoceptive and
exteroceptive signals to control food intake, energy expenditure, and other metabolic responses.
To determine whether mTORC1 signaling in AgRP neurons is necessary for regulating energy and
glucose homeostasis, especially in situations of negative energy balance, mice carrying ablation of
the Raptor gene exclusively in AgRP-expressing cells were generated. AgRP∆Raptor mice showed
no differences in body weight, fat mass, food intake, or energy expenditure; however, a slight im-
provement in glucose homeostasis was observed compared to the control group. When subjected
to 5 days of food restriction (40% basal intake), AgRP∆Raptor female mice lost less lean body mass
and showed a blunted reduction in energy expenditure, whereas AgRP∆Raptor male mice maintained
a higher energy expenditure compared to control mice during the food restriction and 5 days of
refeeding period. AgRP∆Raptor female mice did not exhibit the food restriction-induced increase
in serum corticosterone levels. Finally, although hypothalamic fasting- or refeeding-induced Fos
expression showed no differences between the groups, AgRP∆Raptor mice displayed increased hyper-
phagia during refeeding. Thus, some metabolic and neuroendocrine responses to food restriction are
disturbed in AgRP∆Raptor mice.

Keywords: agouti-related protein; food intake; hypothalamus; mammalian target of rapamycin;
mouse; raptor; sex differences

1. Introduction

Several hypothalamic neuronal populations regulate energy and glucose homeostasis [1].
However, neurons that express the agouti-related protein (AgRP) play a critical role in this
aspect. AgRP neurons co-express the neuropeptide Y (NPY) and are exclusively found in
the ventromedial arcuate nucleus of the hypothalamus (ARH), which is near the median
eminence, where the blood-brain barrier is less selective. Consequently, AgRP neurons are
susceptible to variations in the systemic bloodstream’s nutrients, cytokines, and hormones.
Thus, AgRP neurons are specialized in integrating interoceptive and exteroceptive signals
to control food intake, energy expenditure, and other metabolic aspects [1]. The activation
of AgRP neurons drives food intake, even in previously satiated mice, and reduces energy
expenditure [2]. Therefore, AgRP neurons are considered an essential neuronal population
that promotes hunger and activates energy conservation processes, especially in situations
of negative energy balance (e.g., fasting or chronic food deprivation).

Several intracellular signaling pathways are recruited in AgRP neurons by different
hormonal inputs or changes in nutrient levels. Activating these signaling pathways controls
the firing activity, gene expression, and other cellular aspects of AgRP neurons. For
example, leptin recruits the signal transducer and activator of the transcription-3 (STAT3)
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pathway [1,3–5]. STAT3 ablation in AgRP neurons leads to obesity, hyperleptinemia,
mild hyperphagia, and reduced responsiveness to leptin [3]. On the other hand, the
MAPK MEK/ERK pathway mediates the action of insulin to repress Npy/Agrp gene
expression [6]. The effects of insulin and leptin on AgRP neurons are also integrated by
the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway [7,8]. Ablation of the p110β
PI3K subunit in AgRP neurons reduces body weight, food intake, fat mass, and leptinemia
in mice [9]. Another study has shown that genetic inactivation of the STAT5 pathway in
AgRP neurons produces mild obesity in female mice but not in males [10]. Furthermore,
several neuroendocrine responses to food restriction, including the upregulation of the
hypothalamic Agrp gene expression or serum corticosterone levels, were attenuated in mice
carrying ablation of the STAT5 pathway in AgRP neurons [10]. Thus, AgRP neurons rely
on STAT3, STAT5, PI3K, and MAPK signaling pathways to regulate energy homeostasis via
interoceptive cues.

The mammalian target of rapamycin complex 1 (mTORC1) is a protein complex re-
sponsible for sensing nutrients and consequently controlling protein synthesis and other
metabolic aspects [11]. Raptor is an essential protein associated with mTORC1 [12]; there-
fore, the inactivation of Raptor causes a loss of function of mTORC1 signaling [13]. Several
studies have demonstrated that the hypothalamic mTORC1 pathway regulates food in-
take and body adiposity [14–17]. AgRP neurons are involved in the effects of mTORC1
on energy homeostasis. Amino acid availability, particularly leucine, recruits mTORC1
signaling and regulates Agrp gene expression and food intake in vivo [18]. The hormone
ghrelin activates the mTORC1 signaling pathway in the ARH [19]. Central inhibition of
mTORC1 blunts the orexigenic action of ghrelin, which depends on AgRP neurons [20,21],
and prevents ghrelin’s effects on Agrp and Npy gene expression [19]. Raptor ablation in
AgRP neurons does not affect energy homeostasis in ad libitum-fed mice but disturbs the
circadian gene expression of Agrp and Npy [22]. Another study demonstrated that the
mTORC1 signaling pathway in AgRP neurons regulates interscapular brown adipose tissue
(BAT) thermogenesis and energy expenditure [23].

Despite the robust evidence that mTORC1 signaling in AgRP neurons is associated
with the control of energy homeostasis, it is currently unclear whether this signaling path-
way is necessary to produce significant neuroendocrine responses to situations of negative
energy balance. It is worth mentioning that fasting/food restriction induces the activation
of AgRP neurons [4,24–26]; therefore, the primary physiological effects of AgRP neurons
are usually associated with situations of negative energy balance. Thus, the objective of the
current study was to investigate whether mTORC1 signaling in AgRP neurons is necessary
for regulating energy and glucose homeostasis, particularly in situations of negative energy
balance. For this purpose, mice carrying ablation of the Raptor gene exclusively in AgRP-
expressing cells were generated, and possible alterations in metabolism were determined
in situations of ad libitum food intake, during food restriction, and in a refeeding period.
Considering the well-known sexual dimorphism exhibited by ARH neurons [27] and the
sex differences in the responses to different metabolic challenges [24,28–30], the current
study evaluated both male and female mice.

2. Materials and Methods
2.1. Mice

To generate mice carrying disruption of mTORC1 signaling specifically in AgRP neu-
rons, AgRP-Cre mice (The Jackson Laboratory, Bar Harbor, ME, USA; Stock No. 012899)
were initially crossed with animals carrying a pair of loxP sites flanking the Raptor gene
(The Jackson Laboratory; Stock No. 013188). After successive breedings, Raptorflox/flox

mice carrying the AgRP-Cre gene were generated (AgRP∆Raptor mice), whereas negative
littermates for the Cre gene were considered control mice. AgRP-reporter mice were gener-
ated as previously described [31]. Both males and females were used in the experiments.
Mice were weaned and genotyped within 3–4 weeks of life. The mutations were confirmed
by PCR using the REDExtract-N-Amp™ Tissue PCR Kit (Sigma-Aldrich, St. Louis, MO,
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USA). The animal room was maintained on a 12 h light/dark cycle. A regular rodent diet
(2.99 kcal/g; 9.4% kcal derived from fat; Nuvilab CR-1, Quimtia, Brazil) was provided to
the mice. The experimental procedures were approved by the Ethics Committee on the
Use of Animals of the Instituto de Ciencias Biomedicas at the Universidade de Sao Paulo
(protocol 73/2017, approved on 7 July 2017).

2.2. Immunofluorescence

To demonstrate the absence of mTORC1 signaling in ARHAgRP neurons, 16-hour
(overnight) fasted and refed mice (2 h of refeeding after overnight fasting) were perfused,
and their brains were processed, as previously described [24,31]. AgRP-reporter mice
(n = 3) were also perfused after 2 h of refeeding to demonstrate the expression of the
phosphorylated form of S6 (pS6) in AgRP neurons. Then, brain sections were rinsed in
0.02 M potassium phosphate-buffered saline, pH 7.4 (KPBS), and blocked for 1 h in 3%
normal serum. Sections were incubated in an anti-pS6 antibody (1:1000; Cell Signaling
Technologies, Danvers, EUA; Cat# 5364) overnight. Alexa Fluor488-conjugated secondary
antibody (1:500; Jackson ImmunoResearch Laboratories, West Grove, PA, USA) was used
to label pS6-positive cells. The brains were mounted onto gelatin-coated slides, which were
covered with Fluoromount G (Electron Microscopic Sciences, Hatfield, PA, USA). The same
brain series was used to investigate the expression of Fos, a marker of neuronal activation,
in different hypothalamic nuclei of fasted and refed mice. Fos was labeled using the anti-
Fos antibody (1:20,000; Millipore; Cat# Ab5; RRID: AB_2314043). Photomicrographs were
obtained using an Axioimager A1 microscope (Zeiss, Munich, Germany) connected with a
Zeiss Axiocam 512 camera. The number of pS6-positive cells was determined in the ARH of
control and AgRP∆Raptor mice, either in fasted or refed animals. The number of Fos-positive
cells was determined in several hypothalamic nuclei.

2.3. Metabolic Measurements

Body weight and body composition were analyzed every week from weaning until
16 weeks of life. Body composition was analyzed by TD-NMR (LF50 body composition
mouse analyzer, Bruker, Germany). For the glucose and insulin tolerance tests, food was
removed from the cage 4 h before each test. Mice received 2 g glucose/kg or 1 IU insulin/kg
for the glucose tolerance test (GTT) and insulin tolerance test (ITT), respectively. A glucose
meter was used to determine blood glucose levels during these tests using blood samples
from the tail.

2.4. Food Restriction Protocol

Before food restriction, mice were single-housed, and their average food intake was
determined. To induce food restriction, mice received 40% of their basal food intake for
5 consecutive days, 2 h before lights went off, followed by 5 days of ad libitum refeeding.
Food intake, body weight, body composition, and glycemia were determined at baseline
and then daily during food restriction (when food was provided) and in the refeeding
period. The Oxymax/Comprehensive Lab Animal Monitoring System (Columbus Instru-
ments, Columbus, OH, USA) was used to determine O2 and CO2 levels and ambulatory
activity by infrared sensors. The respiratory exchange ratio (RER; CO2 production/O2
consumption) was calculated.

2.5. Tissue Analysis

The entire hypothalamus was collected in a group of ad libitum-fed mice and in mice
after 2 days of food restriction. Total RNA extraction, complementary DNA synthesis,
and quantitative real-time PCR were performed following a previously described proto-
col [24,26,31,32]. The following primers were used: Actb (forward: gctccggcatgtgcaaag;
reverse: catcacaccctggtgccta), Agrp (forward: ctttggcggaggtgctagat; reverse: aggactcgt-
gcagccttacac), Pomc (forward: atagacgtgtggagctggtgc; reverse: gcaagccagcaggttgct), and
Ppia (forward: ccgttcagctctgggatgac; reverse: gggcagcccagaacatcat). The geometric average
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of Actb and Ppia expressions was used to normalize the samples. mRNA levels were
calculated by 2−∆∆Ct. Enzyme-linked immunosorbent assays were used to determine the
serum concentrations of T4 (Calbiotech, El Cajon, USA, # T4044T-100) and corticosterone
(Arbor Assays, Ann Arbor, USA, #K014- H1). T4 and corticosterone kits have a limit of
detection determined as 25 µg/dL and 16.9 pg/mL and an intra- and inter-assay coefficient
of variability ≤8% and ≤6%, respectively.

2.6. Statistical Analysis

The unpaired two-tailed Student’s t-test or two-way ANOVA plus the Newman–
Keuls multiple comparisons test determined differences between the experimental groups,
depending on the number of variables analyzed. Changes over time were determined by
repeated measures, two-way ANOVA, and Sidak’s multiple comparisons test. The Prism
software (GraphPad, San Diego, CA, USA) was used for the statistical analyses. The results
are expressed as the mean ± standard error of the mean. The statistical tests and sample
sizes are found in each figure legend.

3. Results

3.1. Generation of Mice Carrying Ablation of the mTORC1 Signaling in ARHAgRP Neurons

mTORC1 signaling is involved in nutrient sensing [11,14]. So, changes in nutritional
status regulate the phosphorylation of proteins in the mTORC1 pathway. S6 protein is a ma-
jor downstream effector activated by mTORC1 signaling [15,16]. Thus, to demonstrate the
absence of mTORC1 signaling in ARHAgRP neurons, we subjected control and AgRP∆Raptor

mice to 16-hour fasting or 2-hour refeeding and analyzed the number of ARH cells express-
ing S6 phosphorylation (pS6-positive cells). In accordance with previous studies [22], a
small number of pS6-positive cells were found in the ARH of fasted mice (Figure 1A,B). In
control mice, refeeding induced a robust increase in pS6-positive cells in the ventromedial
ARH, where AgRP neurons are found (Figure 1C). In contrast, AgRP∆Raptor mice could
not respond to refeeding, maintaining a small number of pS6-positive cells in the ARH,
similar to fasted mice (Figure 1D,E). Since pS6-positive cells were not colocalized with
AgRP neurons, a group of AgRP-reporter mice (n = 3) was also subjected to refeeding, and
the coexpression between pS6 and AgRP (indirectly visualized by a reporter protein) was
determined. We observed that 90.2% ± 0.9% of pS6-positive cells in the ARH were AgRP
neurons (Figure 1F–H). Thus, variations in nutritional status affect mTORC1 signaling
predominantly in ARHAgRP neurons.

3.2. AgRP∆Raptor Mice Show Normal Body Weight but a Slight Improvement in
Glucose Homeostasis

Hypothalamic mTORC1 signaling regulates several metabolic aspects
in vivo [14–19,22,23,33–35]. Thus, we investigated the metabolic phenotype of AgRP∆Raptor

mice. Male and female AgRP∆Raptor mice exhibited no changes in body weight, fat mass,
or lean body mass compared to control mice (Figure 2). Then, glucose homeostasis was
evaluated by a GTT and an ITT. Male AgRP∆Raptor mice show no difference in the GTT
(Figure 3A,B) but a significant decrease in blood glucose levels in the ITT (effect of Rap-
tor ablation [F(1, 27) = 7.186, p = 0.0124]; interaction [F(5, 135) = 3.848, p = 0.0027]) and in
the area under the curve (AUC) of the ITT, compared to control mice (Figure 3C,D). Fe-
male AgRP∆Raptor mice displayed a slight improvement in glucose tolerance (interaction
[F(5, 145) = 4.668, p = 0.0006]; Figure 3E,F), although no difference in the ITT was observed
between control and AgRP∆Raptor female mice (Figure 3G,H). Thus, AgRP∆Raptor mice do
not exhibit abnormalities in body growth or energy balance; however, ablation of mTORC1
signaling in AgRP neurons slightly improves glucose homeostasis.
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Figure 1. Generation of mice carrying ablation of the mTORC1 signaling in ARHAgRP neurons. (A–
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Quantification of the number of pS6-positive cells in the ARH (n = 4/group). (F–H) Epifluorescence 
photomicrographs showing the colocalization between AgRP (indirectly visualized by a reporter 
protein) and pS6 in the ARH of an AgRP-reporter mouse subjected to refeeding. Abbreviation: 3V, 
third ventricle. Scale bar = 100 µm. *, p < 0.05 (two-way ANOVA, followed by the Newman–Keuls 
multiple comparisons test). 
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Figure 1. Generation of mice carrying ablation of the mTORC1 signaling in ARHAgRP neurons.
(A–D) Epifluorescence photomicrographs showing pS6 immunoreactive cells in the ARH of fasted
control mice (A), fasted AgRP∆Raptor mice (B), refed control mice (C), and refed AgRP∆Raptor mice (D).
(E) Quantification of the number of pS6-positive cells in the ARH (n = 4/group). (F–H) Epifluores-
cence photomicrographs showing the colocalization between AgRP (indirectly visualized by a re-
porter protein) and pS6 in the ARH of an AgRP-reporter mouse subjected to refeeding. Abbreviation:
3V, third ventricle. Scale bar = 100 µm. *, p < 0.05 (two-way ANOVA, followed by the Newman–Keuls
multiple comparisons test).
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Figure 2. AgRP∆Raptor mice exhibit no changes in body weight. (A–C) Changes over time in body
weight, fat mass, and lean body mass in control (n = 15) and AgRP∆Raptor (n = 12) male mice.
(D–F) Changes over time in body weight, fat mass, and lean body mass in control (n = 25) and
AgRP∆Raptor (n = 15) female mice. Data were analyzed by repeated measures two-way ANOVA.
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Figure 3. AgRP∆Raptor mice show a slight improvement in glucose homeostasis. (A–D) Blood glucose
levels and the area under the curve (AUC) of the glucose tolerance test (GTT) and insulin tolerance
test (ITT) in control (n = 14) and AgRP∆Raptor (n = 15) male mice. (E–H) Blood glucose levels and
the AUC of the GTT and ITT in control (n = 16) and AgRP∆Raptor (n = 14) female mice. Changes in
blood glucose levels were analyzed by repeated measures two-way ANOVA (and Sidak’s multiple
comparisons test). An unpaired, two-tailed Student’s t-test was used to analyze the AUC. *, p < 0.05,
significantly different compared to control mice.

3.3. mTORC1 Signaling in AgRP Neurons Does Not Regulate Body Weight during Food
Restriction and Refeeding

Previous studies indicate the critical role of AgRP neurons in energy conservation [2],
particularly during situations of food restriction [10,23,26,36,37]. To investigate whether
mTORC1 signaling in AgRP neurons is required to induce major neuroendocrine adapta-
tions during conditions of negative energy balance, control and AgRP∆Raptor mice were
subjected to 5 days of food restriction (40% of their basal food intake), followed by
5 days of ad libitum refeeding. No differences in food intake were observed between
control and AgRP∆Raptor mice before, during, and after food restriction, either in males
(Figure 4A) or females (Figure 4F). Food restriction caused a significant reduction in body
weight, fat mass, lean body mass, and glycemia in males (Figure 4B–E) and females
(Figure 4G–J). No differences between control and AgRP∆Raptor mice were observed, except
that AgRP∆Raptor female mice lost less lean body mass compared to control females (inter-
action [F(10, 220) = 2.563, p = 0.006]; Figure 4I). A significant interaction was also observed in
the glycemia of female mice (F (10, 220) = 2.876, p = 0.0022]; Figure 4J). During the refeeding
period, robust hyperphagia was observed in all experimental groups without differences
between control and AgRP∆Raptor mice (Figure 4A,F). Furthermore, the refeeding period
was sufficient to recover the reductions in body weight, fat mass, lean body mass, and
glycemia previously caused by food deprivation. These changes were similarly observed
in control and AgRP∆Raptor mice, either in males or females. Thus, mTORC1 signaling in
AgRP neurons does not modulate the effects of food restriction and refeeding on body
weight, body composition, and blood glucose levels. However, the loss of lean mass was
attenuated in food deprived AgRP∆Raptor female mice.



Cells 2023, 12, 2442 7 of 17Cells 2023, 12, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 4. mTORC1 signaling in AgRP neurons does not regulate body weight during food restriction 
and refeeding. (A–E) Changes in food intake, body weight, fat mass, lean body mass, and glycemia 
during food restriction and refeeding in control (n = 8) and AgRPΔRaptor (n = 10) male mice. (F–J) 
Changes in food intake, body weight, fat mass, lean body mass, and glycemia during food restriction 
and refeeding in control (n = 12) and AgRPΔRaptor (n = 12) female mice. Data were analyzed by re-
peated measures, two-way ANOVA, and Sidak’s multiple comparisons test. *, p < 0.05, significantly 
different compared to control mice. 

3.4. Absence of mTORC1 Signaling in AgRP Neurons Partially Blunts the Reduction in Energy 
Expenditure Caused by Food Restriction 

Food restriction activates AgRP neurons [4,24,25] and produces energy-saving adap-
tations [10,24,26,31,32]. Consequently, food-deprived animals frequently show reduced 
vO2, a reliable indicator of energy expenditure. AgRPΔRaptor mice exhibited no differences 
in vO2, RER, and ambulatory activity in the fed state compared to control animals, either 
in males (Figure 5A–C) or females (Figure 5G–I). Despite the absence of a difference in 
basal VO2, a significant effect of the mutation was observed in the absolute VO2 of male 
AgRPΔRaptor mice compared to control mice (F(1, 11) = 8.724, p = 0.0131), indicating that male 
AgRPΔRaptor mice maintain a higher VO2 during the food restriction and refeeding periods 
(Figure 5A). No other differences were observed in the RER or ambulatory activity and in 

Figure 4. mTORC1 signaling in AgRP neurons does not regulate body weight during food restric-
tion and refeeding. (A–E) Changes in food intake, body weight, fat mass, lean body mass, and
glycemia during food restriction and refeeding in control (n = 8) and AgRP∆Raptor (n = 10) male
mice. (F–J) Changes in food intake, body weight, fat mass, lean body mass, and glycemia during
food restriction and refeeding in control (n = 12) and AgRP∆Raptor (n = 12) female mice. Data were
analyzed by repeated measures, two-way ANOVA, and Sidak’s multiple comparisons test. *, p < 0.05,
significantly different compared to control mice.

3.4. Absence of mTORC1 Signaling in AgRP Neurons Partially Blunts the Reduction in Energy
Expenditure Caused by Food Restriction

Food restriction activates AgRP neurons [4,24,25] and produces energy-saving adapta-
tions [10,24,26,31,32]. Consequently, food-deprived animals frequently show reduced VO2,
a reliable indicator of energy expenditure. AgRP∆Raptor mice exhibited no differences in
VO2, RER, and ambulatory activity in the fed state compared to control animals, either
in males (Figure 5A–C) or females (Figure 5G–I). Despite the absence of a difference in
basal VO2, a significant effect of the mutation was observed in the absolute VO2 of male
AgRP∆Raptor mice compared to control mice (F(1, 11) = 8.724, p = 0.0131), indicating that
male AgRP∆Raptor mice maintain a higher VO2 during the food restriction and refeeding
periods (Figure 5A). No other differences were observed in the RER or ambulatory activity
and in the changes in the VO2, RER, and ambulatory activity between male control and
AgRP∆Raptor mice (Figure 5B–F). In the females, we observed a significant interaction in
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the absolute VO2 (F(10, 110) = 2.751, p = 0.0046; Figure 5G) and relative VO2 (F(9, 99) = 2.704,
p = 0.0074; Figure 5J), comparing control and AgRP∆Raptor mice. Particularly in the relative
VO2, female AgRP∆Raptor mice presented a blunted reduction in energy expenditure during
food restriction compared to control females (Figure 5G). Like the males, no significant
differences were observed in the RER (Figure 5H,K) and ambulatory activity (Figure 5I,L)
between control and AgRP∆Raptor female mice.
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Figure 5. The absence of mTORC1 signaling in AgRP neurons partially blunts the reduction in energy
expenditure caused by food restriction. (A–F) Changes in VO2, respiratory exchange ratio (RER),
and ambulatory activity, either in absolute values or relative to baseline, during food restriction and
refeeding in control (n = 6) and AgRP∆Raptor (n = 7) male mice. (G–L) Changes in VO2, RER, and
ambulatory activity, either in absolute values or relative to baseline, during food restriction and
refeeding in control (n = 7) and AgRP∆Raptor (n = 7) female mice. Data were analyzed by repeated
measures, two-way ANOVA, and Sidak’s multiple comparisons test.
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3.5. Neuroendocrine Responses to Food Restriction Are Mildly Attenuated in AgRP∆Raptor Mice

In the following experiments, the neuroendocrine responses to food restriction were
evaluated. As expected [10,24,26,31,32], food restriction increased Agrp mRNA expres-
sion in the hypothalamus, whereas Pomc mRNA levels decreased in food-deprived mice.
Nonetheless, no differences between control and AgRP∆Raptor mice were observed in these
responses, either in males or females (Figure 6A–D). Next, the hormonal profile was de-
termined. T4 levels decreased in food-deprived mice, regardless of phenotype or sex
(Figure 7A,C). Serum corticosterone levels increased during food restriction (Figure 7B,D).
However, although this increase occurred similarly in control and AgRP∆Raptor male mice
(Figure 7B), disruption of mTORC1 signaling in AgRP neurons blunted the increase in
serum corticosterone levels of AgRP∆Raptor female mice (Figure 7D). Thus, neuroendocrine
responses to food restriction are mildly attenuated in AgRP∆Raptor female mice.
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and a Newman–Keuls multiple comparisons test. *, p < 0.05; **, p < 0.01 significantly different
compared to control mice.
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3.6. AgRP∆Raptor Mice Show Increased Hyperphagia during Refeeding after an Acute Fasting

In addition to chronic food restriction, acute fasting has been widely used to investigate
the role of hypothalamic neurons in regulating food intake [4,14,24,25,31,38,39]. Thus,
we determined whether mTORC1 signaling in AgRP neurons is necessary to induce the
activation of hypothalamic neurons after an acute fasting (16 h) or following 2 h of refeeding
(Figure 8). As previously shown, fasted mice exhibited a prominent Fos expression in the
ventromedial ARH (Figure 9A). In contrast, short-term refeeding is sufficient to increase
Fos expression in the lateral ARH (Figure 9B). However, these changes were similarly
observed in control and AgRP∆Raptor mice. No differences between fasted and refed mice
were observed in the number of Fos-positive neurons in the paraventricular nucleus of the
hypothalamus (Figure 9C), lateral hypothalamic area (Figure 9D), and dorsomedial nucleus
of the hypothalamus (Figure 9E). Furthermore, disruption of mTORC1 signaling in AgRP
neurons did not cause changes in Fos expression in these hypothalamic areas. Refeeding-
induced hyperphagia was also evaluated in control and AgRP∆Raptor mice (Figure 9F).
Noteworthy, AgRP∆Raptor mice showed increased refeeding-induced food intake after an
acute fasting (Figure 9F).
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Figure 8. Expression of Fos protein in the hypothalamus of fasted and refed mice. (A–L) Epiflu-
orescence photomicrographs showing Fos immunoreactive cells in different hypothalamic nuclei
of fasted control mice (A–C), fasted AgRP∆Raptor mice (D–F), refed control mice (G–I), and refed
AgRP∆Raptor mice (J–L). Abbreviations: 3V, third ventricle; ARHl, lateral arcuate nucleus; ARHvm,
ventromedial arcuate nucleus; DMH, dorsomedial nucleus of the hypothalamus; fx, fornix; LHA,
lateral hypothalamic area; PVH, paraventricular nucleus of the hypothalamus. Scale bars = 100 µm.
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Figure 9. Effects of fasting and refeeding on the activation of hypothalamic neurons and food intake.
(A–E) Quantification of the number of Fos-positive neurons in the hypothalamus (n = 3–4/group).
(F) Food intake during 2 h of refeeding after an overnight fasting (16 h). Data were analyzed by a
two-way ANOVA, a Newman–Keuls multiple comparisons test, or an unpaired two-tailed Student’s
t-test (food intake). *, p < 0.05; **, p < 0.01 significantly different compared to control mice.

4. Discussion

In the current study, we investigated the phenotype of mice carrying inactivation
of the mTORC1 pathway exclusively in AgRP-expressing cells. Considering the role of
mTORC1 signaling in nutrient sensing [11,14] and the importance of AgRP neurons in
triggering metabolic adaptations in situations of negative energy balance [10,23,26,36,37],
we hypothesized that AgRP∆Raptor mice may not exhibit a complete metabolic response to
food restriction. In accordance with a previous study [22], ad libitum fed AgRP∆Raptor mice
exhibited no major alterations in energy homeostasis. However, AgRP∆Raptor mice showed
a slight improvement in glucose homeostasis. In addition, ablation of mTORC1 signaling
affected the changes in energy expenditure during food restriction. Furthermore, female
AgRP∆Raptor mice showed reduced lean body mass loss and a blunted increase in serum
corticosterone levels during food restriction.

To demonstrate the efficacy of our cell-specific deletion, we employed a short-term
refeeding period as a known activator of the mTORC1 signaling pathway [14,15,22]. Refeed-
ing induced a robust increase in the number of cells expressing pS6 in the ARH of control
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mice compared to fasted animals. In contrast, the absence of Raptor in AgRP neurons
prevented the refeeding-induced increase in pS6-positive cells in the ARH of AgRP∆Raptor

mice. A limitation of our validation is that we were not able to colocalize pS6-positive cells
with AgRP neurons in the AgRP∆Raptor mice. It is well known that using antibodies to label
AgRP allows the identification of axons, whereas the staining of cell bodies is poor [5,24].
However, using an AgRP-reporter mouse subjected to refeeding, we observed that approxi-
mately 90% of all pS6-positive cells in the ARH were AgRP neurons, demonstrating that the
absence of an increase in pS6 cells in the ARH of AgRP∆Raptor mice can be fully explained
by the deletion induced in AgRP cells.

Despite the critical role of hypothalamic mTORC1 signaling in regulating energy
homeostasis [14–23], raptor ablation in AgRP neurons produced mild metabolic effects in
ad libitum-fed mice. This phenotype was similar to that observed in a previous study [22]
and probably reflects compensatory mechanisms during development that allow AgRP
neurons to maintain their physiological functions despite the absence of essential proteins
that control their function. This robust plasticity can be exemplified by the fact that
early in life, genetic ablation of the leptin receptor gene in AgRP neurons causes only
mild consequences for energy homeostasis [40]. In contrast, AgRP-specific leptin receptor
deletion in adult animals leads to massive obesity, reproducing the phenotype of db/db
mice [41]. Another study showed that neonatal ablation of AgRP neurons using diphtheria
toxin causes minor effects on energy homeostasis, while the same ablation in adult mice
leads to starvation [42]. Thus, using the Cre-LoxP system to induce early-in-life genetic
manipulation allows compensatory mechanisms during development, possibly masking
the physiological importance of specific proteins.

Although hypothalamic mTORC1 signaling is more related to regulating food intake
and energy homeostasis, previous studies have demonstrated that proteins of mTORC1,
such as S6K, regulate glucose homeostasis via ARH neurons [15,43]. Overexpression of
the p70-S6K1 isoform in the hypothalamus increases fasting glucose levels and hepatic
gluconeogenesis in male mice [43]. We observed a slight improvement in the glucose
tolerance of female AgRP∆Raptor mice and the insulin sensitivity of male AgRP∆Raptor mice.
Since AgRP∆Raptor mice did not exhibit differences in body weight and adiposity compared
to control animals, the effects observed in glucose homeostasis were not secondary to
changes in body composition.

Chronic food restriction reduces energy expenditure in humans and mice by promoting
energy-saving adaptations such as suppression of the thyroid axis, reproduction, and
thermogenesis [10,24,26,31,32,44,45]. While male AgRP∆Raptor mice maintained a higher
energy expenditure during the food restriction and refeeding periods than control animals,
female AgRP∆Raptor mice presented a blunted reduction in energy expenditure during food
restriction. However, these effects were mild and were not enough to significantly impact
the body weight loss of food-deprived mice. Notably, another study showed that mTORC1
signaling in AgRP neurons regulates adaptive energy expenditure by modulating BAT
thermogenesis [23]. Thus, our findings and other studies indicate that adaptive energy
expenditure is regulated by mTORC1 signaling in AgRP neurons.

We also observed a tendency of male AgRP∆Raptor mice to present a higher RER
during food restriction and refeeding. Chemogenetic activation of ARHAgRP neurons
increases carbohydrate utilization while decreasing fat utilization, reflecting an increased
RER [37]. Thus, it is possible that mTORC1 disruption may lead to an increased activation
of ARHAgRP neurons, explaining the substrate shift to use more carbohydrates as an energy
source instead of using fat. We also observed that AgRP∆Raptor mice showed increased
hyperphagia when they regained access to food after a fasting period. In accordance
with our findings, inhibition of mTORC1 signaling in the hypothalamus increases food
intake by preventing the anorexigenic effect of leptin [14]. Fasting-induced hyperphagia is
associated with the activity of ARHAgRP neurons [4,25,31,32]. So, our findings suggest that
disruption of mTORC1 signaling may increase the activity of ARHAgRP neurons, although
our approaches to indirectly assess the activation of these neurons (e.g., Fos expression or
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gene expression of Agrp or Npy transcripts) were not sensitive enough to detect statistically
significant differences between the groups.

Hypothalamic Agrp expression is upregulated in food-deprived animals, whereas
Pomc expression is suppressed [4,10,24,26,31,32]. These results were reproduced in our
study in both males and females and were not affected by mTORC1 disruption in AgRP neu-
rons. Serum T4 levels are decreased during food restriction, indicating a well-established
inhibition of the thyroid axis [26]. In contrast, serum corticosterone levels increase in food-
deprived animals as a stress response and to maintain endogenous glucose production
in the absence of enough food. While food restriction-induced suppression of serum T4
levels was not significantly altered in mice carrying Raptor ablation in AgRP neurons,
female AgRP∆Raptor mice showed lower serum corticosterone levels during food restric-
tion than food-deprived control mice. Previous studies have shown that AgRP neurons
can regulate corticosterone secretion, corticotrophin-releasing hormone (CRH) expression,
or neuron activity [10,26,38,39]. For example, chemogenetic inhibition of AgRP neurons
reduces CRH content in the paraventricular nucleus of the hypothalamus [39]. Another
study has shown that AgRP neuron activation increases circulating corticosterone lev-
els [38]. Thus, our study indicates that mTORC1 signaling in AgRP neurons regulates
food-restriction-induced glucocorticoid secretion in female mice. The mechanisms behind
this sex difference are unknown; however, robust evidence suggests that ARH neurons
are sexually dimorphic [27]. Furthermore, the circulating levels of hormones that regulate
food intake, the sensitivity to these hormones, the responsiveness to a high-fat diet, and
many other metabolic aspects present significant sex differences [24,28–30]. ARHAgRP/NPY

neurons do not express estrogen receptor α [46]. However, changes in estrogen levels cause
profound effects on Npy and Agrp gene expression and the fasting-induced activation of
ARHAgRP/NPY neurons [46]. We also observed that only female AgRP∆Raptor mice showed
a reduced lean mass loss during food restriction compared to control females. Gluco-
corticoids enhance protein degradation in skeletal muscle, favoring muscle mass loss in
catabolic conditions [47,48]. Thus, it is possible that the blunted increase in corticosterone
secretion in female AgRP∆Raptor mice during food restriction may have spared their loss
of lean body mass. However, future studies are necessary to test this possibility. Female
AgRP∆Raptor mice also exhibited a more substantial decline in glycemia at the beginning of
the food restriction. The blunted increase in corticosterone secretion during food restriction
may also explain the lower glycemia of female AgRP∆Raptor mice on the first day of food
restriction compared to control females.

5. Conclusions

Our findings confirm our initial hypothesis that mTORC1 signaling in AgRP neurons
regulates, to some extent, the metabolic and neuroendocrine responses to food restriction.
However, the phenotype of AgRP∆Raptor mice is mild, and the differences observed were
sex dependent. Nonetheless, we provide evidence that early-in-life disruption of mTORC1
signaling in AgRP neurons is sufficient to produce significant metabolic alterations in mice.
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