Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (287)

Search Parameters:
Authors = Haoyu Liu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8600 KiB  
Article
A Small-Molecule Compound Targeting Canine Mammary Cancer Regulates CXCL10 and MECOM Transcripts via Histone Modifications in CMT-N7
by Rongrong Wang, Chuyang Zhu, Xiaoyue Yuan, Cuipeng Zhu, Saber Y. Adam, Haoyu Liu, Demin Cai and Jiaguo Liu
Animals 2025, 15(15), 2274; https://doi.org/10.3390/ani15152274 - 4 Aug 2025
Abstract
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with [...] Read more.
Nuclear receptors are involved in multiple biological processes, among which RORγ can regulate the expression of inflammation-related genes and is thus frequently used as a therapeutic target for cancer. Canine mammary cancer is one of the most common tumor diseases in dogs, with a relative incidence rate of 46.71% for CMT in China over the past five years, severely threatening the life and health of dogs. Therefore, the search for novel drugs targeting canine mammary cancer is of great significance. This study aims to investigate how the RORγ inhibitors W6134 and XY018 affect the expression of inflammatory genes through histone modifications in CMT-N7 cells. These results show that W6134 and XY018 can upregulate signaling pathways related to inflammation and apoptosis and influence the expression of associated genes. The close link between RORγ and inflammation-related genes further confirms that RORγ may serve as a therapeutic target for canine cancer. Additionally, ChIP-qPCR was used to detect the enrichment of histone markers such as P300, H3K27ac, H3K4me1, H3K9la, and H3K9bhb at the target loci of CXCL10 and MECOM genes. Collectively, our findings provide molecular evidence for the protective role of RORγ in canine mammary cancer, potentially by regulating inflammatory pathways via histone modifications, offering new insights for improving the cure rate and survival of affected dogs. Full article
(This article belongs to the Special Issue Nutrition, Physiology and Metabolism of Companion Animals)
Show Figures

Figure 1

16 pages, 13514 KiB  
Article
Development of a High-Speed Time-Synchronized Crop Phenotyping System Based on Precision Time Protoco
by Runze Song, Haoyu Liu, Yueyang Hu, Man Zhang and Wenyi Sheng
Appl. Sci. 2025, 15(15), 8612; https://doi.org/10.3390/app15158612 (registering DOI) - 4 Aug 2025
Viewed by 57
Abstract
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the [...] Read more.
Aiming to address the problems of asynchronous acquisition time of multiple sensors in the crop phenotype acquisition system and high cost of the acquisition equipment, this paper developed a low-cost crop phenotype synchronous acquisition system based on the PTP synchronization protocol, realizing the synchronous acquisition of three types of crop data: visible light images, thermal infrared images, and laser point clouds. The paper innovatively proposed the Difference Structural Similarity Index Measure (DSSIM) index, combined with statistical indicators (average point number difference, average coordinate error), distribution characteristic indicators (Charm distance), and Hausdorff distance to characterize the stability of the system. After 72 consecutive hours of synchronization testing on the timing boards, it was verified that the root mean square error of the synchronization time for each timing board reached the ns level. The synchronous trigger acquisition time for crop parameters under time synchronization was controlled at the microsecond level. Using pepper as the crop sample, 133 consecutive acquisitions were conducted. The acquisition success rate for the three phenotypic data types of pepper samples was 100%, with a DSSIM of approximately 0.96. The average point number difference and average coordinate error were both about 3%, while the Charm distance and Hausdorff distance were only 1.14 mm and 5 mm. This system can provide hardware support for multi-parameter acquisition and data registration in the fast mobile crop phenotype platform, laying a reliable data foundation for crop growth monitoring, intelligent yield analysis, and prediction. Full article
(This article belongs to the Special Issue Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 4649 KiB  
Article
Defect Detection Algorithm for Photovoltaic Cells Based on SEC-YOLOv8
by Haoyu Xue, Liqun Liu, Qingfeng Wu, Junqiang He and Yamin Fan
Processes 2025, 13(8), 2425; https://doi.org/10.3390/pr13082425 - 31 Jul 2025
Viewed by 213
Abstract
Surface defects of photovoltaic (PV) cells can seriously affect power generation efficiency. Accurately detecting such defects and handling them in a timely manner can effectively improve power generation efficiency. Aiming at the high-precision and real-time requirements for surface defect detection during the use [...] Read more.
Surface defects of photovoltaic (PV) cells can seriously affect power generation efficiency. Accurately detecting such defects and handling them in a timely manner can effectively improve power generation efficiency. Aiming at the high-precision and real-time requirements for surface defect detection during the use of PV cells, this paper proposes a PV cell surface defect detection algorithm based on SEC-YOLOv8. The algorithm first replaces the Spatial Pyramid Pooling Fast module with the SPPELAN pooling module to reduce channel calculations between convolutions. Second, an ECA attention mechanism is added to enable the model to pay more attention to feature extraction in defect areas and avoid target detection interference from complex environments. Finally, the upsampling operator CARAFE is introduced in the Neck part to solve the problem of scale mismatch and enhance detection performance. Experimental results show that the improved model achieves a mean average precision (mAP@0.5) of 69.2% on the PV cell dataset, which is 2.6% higher than the original network, which is designed to achieve a superior balance between the competing demands of accuracy and computational efficiency for PV defect detection. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

14 pages, 3769 KiB  
Article
Inversely Designed Silicon Nitride Power Splitters with Arbitrary Power Ratios
by Yang Cong, Shuo Liu, Yanfeng Liang, Haoyu Wang, Huanlin Lv, Fangxu Liu, Xuanchen Li and Qingxiao Guo
Photonics 2025, 12(8), 744; https://doi.org/10.3390/photonics12080744 - 24 Jul 2025
Viewed by 217
Abstract
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The [...] Read more.
An optical power splitter (OPS) with arbitrary splitting ratios has attracted significant research interest for its broad applications in photonic integrated circuits. A series of OPSs with arbitrary splitting ratios based on silicon nitride (Si3N4) platforms are presented. The devices are designed with ultra-compact dimensions using three-dimensional finite-difference time-domain (3D FDTD) analysis and an inverse design algorithm. Within a 50 nm bandwidth (1525 nm to 1575 nm), we demonstrated a 1 × 2 OPS with splitting ratios of 1:1, 1:1.5, and 1:2; a 1 × 3 OPS with ratios of 1:2:1 and 2:1:2; and a 1 × 4 OPS with ratios of 1:1:1:1 and 2:1:2:1. The target splitting ratios are achieved by optimizing pixel distributions in the coupling region. The dimensions of the designed devices are 1.96 × 1.96 µm2, 2.8 × 2.8 µm2, and 2.8 × 4.2 µm2, respectively. The designed devices achieve transmission efficiencies exceeding 90% and exhibit excellent power splitting ratios (PSRs). Full article
Show Figures

Figure 1

15 pages, 1498 KiB  
Article
Host-Affected Body Coloration Dynamics in Perina nuda Larvae: A Quantitative Analysis of Color Variations and Endogenous Plant Influences
by Songkai Liao, Xinjie Mao, Yuan Liu, Guihua Luo, Jiajin Wang, Haoyu Lin, Ming Tang and Hui Chen
Insects 2025, 16(7), 728; https://doi.org/10.3390/insects16070728 - 17 Jul 2025
Viewed by 384
Abstract
Insects’ body coloration may be indirectly influenced by their host plants. Perina nuda (Lepidoptera: Lymantriidae), commonly known as the Banyan Tussock Moth and a serious pest of banyan trees (Ficus spp.) in southern China, exhibits light body coloration during its first- to [...] Read more.
Insects’ body coloration may be indirectly influenced by their host plants. Perina nuda (Lepidoptera: Lymantriidae), commonly known as the Banyan Tussock Moth and a serious pest of banyan trees (Ficus spp.) in southern China, exhibits light body coloration during its first- to third-instar stages, with its coloration progressively darkening as it matures, but little is known of the relationship between larval body coloration and host plants. To address this gap, we examined the R (red), G (green), B (blue), and L (lightness) values of the head, dorsal thorax and abdomen, stripe, dorsal mid-line, and tail of larvae fed on different hosts and host endogenous substance by using quantitative image analysis and chemical determination. Our results revealed that larval body coloration exhibited conserved ontogenetic patterns but varied significantly with host species, developmental age, and anatomical region. Redundancy analysis identified chlorophyll-b as the dominant driver, strongly associating with dorsal thorax–abdomen pigmentation. Flavonoids exhibited subthreshold significance, correlating with darker dorsal mid-line coloration, while nutrients (sugars, proteins) showed negligible effects. Linear regression revealed weak but significant links between leaf and larval body coloration in specific body regions. These findings demonstrate that host plant endogenous substances play a critical role in shaping larval body coloration. This study provides a foundation for understanding the ecological and biochemical mechanisms underlying insect pigmentation, with implications for adaptive evolution and pest management strategies. Full article
(This article belongs to the Special Issue Ecological Adaptation of Insect Pests)
Show Figures

Figure 1

22 pages, 11082 KiB  
Article
Exploring the Impact of Inter-Layer Structure on Glass Fiber-Poplar Composite Board: Mechanical and Thermal Properties Analysis
by Jiong Zhang, Shurui Liu, Jinpeng Li, Jixuan Wang, Haoyu Bai, Peng Wei and Tian Liu
Materials 2025, 18(14), 3284; https://doi.org/10.3390/ma18143284 - 11 Jul 2025
Viewed by 258
Abstract
This study presents the design and fabrication of a glass fiber–poplar veneer composite plate, investigating how varying interlayer configurations of glass fiber (single- and double-layer) and the arrangement of poplar veneer layers (odd and even) impact the mechanical and thermal insulation characteristics of [...] Read more.
This study presents the design and fabrication of a glass fiber–poplar veneer composite plate, investigating how varying interlayer configurations of glass fiber (single- and double-layer) and the arrangement of poplar veneer layers (odd and even) impact the mechanical and thermal insulation characteristics of these composite plates. Compared to plywood made from natural wood, glass fiber significantly improved the properties of fast-growing poplar plywood. The highest impact strength increased by 3.62 times, while the flexural strength increased by 26.22% and the tensile strength by 29.66%. The thermal diffusion coefficient of the experimental group decreased by 40.74%, indicating better insulation. Interestingly, single-layer glass fiber is superior to a double-layer structure in terms of thermal insulation. An optimal interlayer structure was identified, comprising one veneer layer between two layers of glass fiber cloth, repeated three times. Abaqus 2019 was used for finite element analysis (FEA). The simulation results agree with the experimental data to within 5%. These findings confirm the importance of structural configuration in determining the properties of composite materials, providing a theoretical basis for the structural design of fiber–reinforced composite materials. Full article
Show Figures

Figure 1

15 pages, 3329 KiB  
Article
Identification of Chicken Bone Paste in Starch-Based Sausages Using Laser-Induced Breakdown Spectroscopy
by Haoyu Li, Li Shen, Xiang Han, Yu Liu and Yutong Wang
Sensors 2025, 25(13), 4226; https://doi.org/10.3390/s25134226 - 7 Jul 2025
Viewed by 371
Abstract
This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken [...] Read more.
This study aims to rapidly in situ identify starch sausage samples with the improper addition of chicken bone paste. Chicken bones play important roles in building materials, biomass fuels, and as food additives after enzymatic hydrolysis, but no current research indicates that chicken bones can be directly added to food for consumption. Especially in starch sausages, the addition of chicken bone paste is highly controversial due to potential risks of esophageal laceration and religious concerns. This paper first uses laser-induced breakdown spectroscopy (LIBS) to investigate the elemental differences between starch sausages and chicken bone paste. By preparing mixtures of starch sausages and chicken bone paste at different ratios, the relationships between the spectral peak intensities of elements, such as Ca, Ba, and Sr, and the proportion of chicken bone paste were determined. Through processing methods such as normalization with reference spectral lines, selection of the signal of the second laser pulse at the same position, and electron temperature correction, the determination coefficients (R2) of each element’s spectral lines have significantly improved. Specifically, the R2 values for Ca I, Ca II, Ba II, and Sr II have increased from 0.302, 0.694, 0.857, and 0.691 to 0.972, 0.952, 0.970, and 0.982, respectively. Finally, principal component analysis (PCA) was used to distinguish starch sausages, chicken bone paste, and their mixtures at different ratios, with further effective differentiation achieved through t-distributed stochastic neighbor embedding (t-SNE). The results show that LIBS technology can serve as an effective and rapid method for detecting elemental composition in food and distinguishing different food products, providing safety guarantees for food production and supervision. Full article
(This article belongs to the Special Issue Optical Sensing Technologies for Food Quality and Safety)
Show Figures

Figure 1

21 pages, 6884 KiB  
Review
Advanced Strategies for Suppressing the Self-Corrosion of the Anode in Al–Air Batteries
by Shenjia Li, Zhiqiang Liu, Xiangfeng Wei, Hao Wu, Haoyu Mei and Jiehua Liu
Metals 2025, 15(7), 760; https://doi.org/10.3390/met15070760 - 6 Jul 2025
Viewed by 483
Abstract
Aluminum–air batteries are highly promising energy storage systems due to their high theoretical energy density, environmental friendliness, and cost-effectiveness. However, the self-corrosion of aluminum anodes in alkaline electrolytes remains a critical issue that significantly limits their practical application and commercialization. This review paper [...] Read more.
Aluminum–air batteries are highly promising energy storage systems due to their high theoretical energy density, environmental friendliness, and cost-effectiveness. However, the self-corrosion of aluminum anodes in alkaline electrolytes remains a critical issue that significantly limits their practical application and commercialization. This review paper comprehensively examined various advanced strategies aimed at suppressing the self-corrosion of anodes in Al–air batteries. We summarized the fundamental principles of these approaches, their advantages and disadvantages, and provided an in-depth analysis of their effectiveness, supported by experimental and theoretical evidence. Specifically, this review systematically analyzes six major strategies for suppressing anode self-corrosion: anode alloying, electrolyte additives, novel electrolytes, anode surface treatment, battery structural design, and computer-aided investigation. Furthermore, we proposed the challenges and future research directions in this field. Overall, this review aimed to offer valuable insights and guidance for the development of high-performance, long-lasting Al–air batteries. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

13 pages, 7320 KiB  
Article
Determination of Main Bearing Dynamic Clearance in a Shield Tunneling Machine Through a Broadband PMUT Array with a Decreased Blind Area and High Accuracy
by Guoxi Luo, Haoyu Zhang, Delai Liu, Wenyan Li, Min Li, Zhikang Li, Lin Sun, Ping Yang, Ryutaro Maeda and Libo Zhao
Sensors 2025, 25(13), 4182; https://doi.org/10.3390/s25134182 - 4 Jul 2025
Cited by 1 | Viewed by 338
Abstract
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by [...] Read more.
Traditional PMUT ultrasonic ranging systems usually possess a large measurement blind area under the integrated transmit–receive mode, dramatically limiting its distance measurement in confined spaces, such as when determining the clearance of large bearing components. Here, a broadband PMUT rangefinder was designed by integrating six types of different cells with adjacent resonant frequencies into an array. Through overlapping and coupling of the bandwidths from the different cells, the proposed PMUTs showed a wide –6 dB fractional bandwidth of 108% in silicon oil. Due to the broadening of bandwidth, the device could obtain the maximum steady state with less excitation (5 cycles versus 14 cycles) and reduce its residual ring-down (ca. 6 μs versus 15 μs) compared with the traditional PMUT array with the same cells, resulting in a small blind area. The pulse–echo ranging experiments demonstrated that the blind area was effectively reduced to 4.4 mm in air or 12.8 mm in silicon oil, and the error was controlled within ±0.3 mm for distance measurements up to 250 mm. In addition, a specific ultrasound signal processing circuit with functions of transmitting, receiving, and processing ultrasonic waves was developed. Combining the processing circuit and PMUT device, the system was applied to determine the axial clearance of the main bearing in a tunneling machine. This work develops broadband PMUTs with a small blind area and high resolution for distance measurement in narrow and confined spaces, opening up a new path for ultrasonic ranging technology. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

9 pages, 2068 KiB  
Article
Effects of Ge-Doping on Thermoelectric Performance of Polycrystalline Cubic Sn0.5Ag0.25Bi0.25Se0.50Te0.50
by Haoyu Zhao, Junliang Zhu, Zhonghe Zhu, Lin Bo, Wenying Wang, Xingshuo Liu, Changcun Li and Degang Zhao
Crystals 2025, 15(7), 622; https://doi.org/10.3390/cryst15070622 - 4 Jul 2025
Viewed by 254
Abstract
Cubic phase SnSe-based materials have great potential in the field of thermoelectricity due to their reduced carrier scattering, increased band degeneracy, and ultra-low lattice thermal conductivity. Nevertheless, systematic studies on the influence of element doping on the thermoelectric properties of cubic SnSe-based materials [...] Read more.
Cubic phase SnSe-based materials have great potential in the field of thermoelectricity due to their reduced carrier scattering, increased band degeneracy, and ultra-low lattice thermal conductivity. Nevertheless, systematic studies on the influence of element doping on the thermoelectric properties of cubic SnSe-based materials are still relatively scarce. To enrich the research in this field, this work investigates the effects of Ge doping on the phase composition, electrical and thermal transport properties of cubic Sn0.50Ag0.25Bi0.25Se0.50Te0.50 thermoelectric materials. X-ray diffraction (XRD) analysis confirmed that the Ge-doped samples exhibited a single cubic phase structure, while scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) revealed a uniform distribution of elements within the samples. The results indicate that increasing the Ge doping content substantially enhances their electrical conductivity, albeit at the expense of elevated thermal conductivity. By optimizing the content of Ge-doping, the thermoelectric figure of merit (ZT) reached 0.74 at 750 K. Notably, while moderate Ge doping enhances electrical transport properties, excessive doping leads to a significant rise in thermal conductivity, ultimately constraining further thermoelectric performance gains. Full article
Show Figures

Figure 1

15 pages, 8047 KiB  
Article
Comparison of Chloroplast Genome Sequences of Saxifraga umbellulata var. pectinata in Qinghai–Xizang Plateau
by Cui Wang, Kaidi Su, Qiwen Li, Rui Sun, Haoyu Liu, Jingxuan Du, Jinping Li and Likuan Liu
Genes 2025, 16(7), 789; https://doi.org/10.3390/genes16070789 - 30 Jun 2025
Viewed by 302
Abstract
Background: Saxifraga umbellulata var. pectinata (Saxifragaceae) is recognized as a genuine medicinal material from the Qinghai–Tibet Plateau in China. This paper presents the chloroplast (cp) genome of S. umbellulata var. pectinata, marking the first report for this genus. The Tibetan medicinal plants [...] Read more.
Background: Saxifraga umbellulata var. pectinata (Saxifragaceae) is recognized as a genuine medicinal material from the Qinghai–Tibet Plateau in China. This paper presents the chloroplast (cp) genome of S. umbellulata var. pectinata, marking the first report for this genus. The Tibetan medicinal plants documented in ‘Chinese Medicinal Plant Resources’ are associated with their chloroplast genomes and medicinal mechanisms. Objective: In order to resolve any potential ambiguity in conventional classifications, this study reconstructs the evolutionary position of S. umbellulata var. pectinata within the genus by comparing its chloroplast genetic information with that of other groupings. Methods: The chloroplast genome of S. umbellulata var. pectinata was sequenced using the Illumina NovaSeq 6000 platform. Subsequent sequence assembly, annotation, and characterization were performed using bioinformatics analysis. The NJ phylogenetic tree was constructed using MEGA 7.0 software. Results: The complete chloroplast genome of S. umbellulata var. pectinata is 146,549 bp in length, comprising four subregions: a large single-copy (LSC) region of 79,318 bp and a small single-copy (SSC) region of 16,390 bp, separated by a pair of inverted repeat (IR) regions each 25,421 bp long. This cp genome contains 131 genes, including 86 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The overall GC content is 38.1%. Phylogenetic analysis based on 20 cp genomes indicates that S. umbellulata var. pectinata is closely related to Saxifraga sinomontana and Saxifraga stolonifera. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

20 pages, 2551 KiB  
Article
Theoretical Study on Impact of Solar Radiation Heat Gain on Thermal Comfort and Energy Efficiency in Glass Curtain Wall Buildings Based on PMV Index
by Haoyu Chen, Jinzhe Nie, Yuzhe Liu and Yuelin Li
Buildings 2025, 15(13), 2228; https://doi.org/10.3390/buildings15132228 - 25 Jun 2025
Viewed by 564
Abstract
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning [...] Read more.
With rapid global urbanization, glass curtain wall buildings have been widely adopted due to aesthetics and natural lighting. However, during summer time, intense solar radiation leads to significant indoor heat gain, which adversely affect thermal comfort and energy efficiency. The conventional air conditioning systems are typically equipped with a cooling capacity sufficient to maintain an indoor air temperature at the design values specified in the Design standard for energy efficiency of public buildings, which fails to account for the effects of radiation temperature, potentially resulting in reduced thermal comfort and energy inefficiency. By integrating the Thermal Comfort Tool to calculate the PMV index, this study evaluates the affection of solar heat gain on indoor occupants’ thermal comfort and proposes an optimized air temperature control strategy to realize thermal comfort. Based on the dynamic air temperature strategy, an energy consumption model is developed to evaluate the affection of solar radiation on energy consumption for glass curtain wall buildings based on the PMV index. The synergistic effects of shading measures are then evaluated. This study conducts simulation analysis using an office building with a glass curtain wall located in Beijing as a case study. When accounting for radiant heat gain, a significant portion of the time (53.89%) fall outside the thermal comfort range, even when the air conditioning is set to the designated temperature. To maintain thermal comfort, the air conditioning temperature must be lowered by 1.4–3.5 °C, resulting in a 28.08% increase in energy consumption. To address this issue, this study finds that installing interior shading can reduce radiant heat gain. Under the same thermal comfort conditions, the required air temperature reduction is only 0.8–2.1 °C, leading to a 24.26% reduction in energy consumption compared to the case without interior shading. Full article
Show Figures

Figure 1

23 pages, 3927 KiB  
Article
Effects of the Light-Felling Intensity on Hydrological Processes in a Korean Pine (Pinus koraiensis) Forest on Changbai Mountain in China
by Qian Liu, Zhenzhao Zhou, Xiaoyang Li, Xinhai Hao, Yaru Cui, Ziqi Sun, Haoyu Ma, Jiawei Lin and Changcheng Mu
Forests 2025, 16(7), 1050; https://doi.org/10.3390/f16071050 - 24 Jun 2025
Viewed by 222
Abstract
(1) Background: Understanding how forest management practices regulate hydrological cycles is critical for sustainable water resource management and addressing global water crises. However, the effects of light-felling (selective thinning) on hydrological processes in temperate mixed forests remain poorly understood. This study comprehensively evaluated [...] Read more.
(1) Background: Understanding how forest management practices regulate hydrological cycles is critical for sustainable water resource management and addressing global water crises. However, the effects of light-felling (selective thinning) on hydrological processes in temperate mixed forests remain poorly understood. This study comprehensively evaluated the impacts of light-felling intensity levels on three hydrological layers (canopy, litter, and soil) in mid-rotation Korean pine (Pinus koraiensis) forests managed under the “planting conifer and preserving broadleaved trees” (PCPBT) system on Changbai Mountain, China. (2) Methods: Hydrological processes—including canopy interception, throughfall, stemflow, litter interception, soil water absorption, runoff, and evapotranspiration—were measured across five light-felling intensity levels (control, low, medium, heavy, and clear-cutting) during the growing season. The stand structure and precipitation characteristics were analyzed to elucidate the driving mechanisms. (3) Results: (1) Low and heavy light-felling significantly increased the canopy interception by 18.9%~57.0% (p < 0.05), while medium-intensity light-felling reduced it by 20.6%. The throughfall was significantly decreased 10.7% at low intensity but increased 5.3% at medium intensity. The stemflow rates declined by 15.8%~42.7% across all treatments. (2) The litter interception was reduced by 22.1% under heavy-intensity light-felling (p < 0.05). (3) The soil runoff rates decreased by 56.3%, 16.1%, and 6.5% under the low, heavy, and clear-cutting intensity levels, respectively, although increased by 27.1% under medium-intensity activity (p < 0.05). (4) The monthly hydrological dynamics shifted from bimodal (control) to unimodal patterns under most treatments. (5) The canopy processes were primarily driven by precipitation, while litter interception was influenced by throughfall and tree diversity. The soil processes correlated strongly with throughfall. (4) Conclusions: Low and heavy light-felling led to enhanced canopy interception and reduced soil runoff and mitigated flood risks, whereas medium-intensity light-felling supports water supply during droughts by increasing the throughfall and runoff. These findings provide critical insights for balancing carbon sequestration and hydrological regulation in forest management. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

22 pages, 4361 KiB  
Article
Expression Analysis of the ABF Gene Family in Actinidia chinensis Under Drought Stress and the Response Mechanism to Abscisic Acid
by Haoyu Wang, Yinqiang Zi, Xu Rong, Qian Zhang, Lili Nie, Jie Wang, Hailin Ren, Hanyao Zhang and Xiaozhen Liu
Horticulturae 2025, 11(7), 715; https://doi.org/10.3390/horticulturae11070715 - 20 Jun 2025
Viewed by 374
Abstract
Drought can limit plant growth. The ABRE binding factor (ABF) gene family is extensively involved in multifarious bioregulatory processes in plants. However, kiwifruit has not yet been systematically analyzed. This study analyzed the response of kiwifruit AcABF genes to drought stress. Eleven AcABF [...] Read more.
Drought can limit plant growth. The ABRE binding factor (ABF) gene family is extensively involved in multifarious bioregulatory processes in plants. However, kiwifruit has not yet been systematically analyzed. This study analyzed the response of kiwifruit AcABF genes to drought stress. Eleven AcABF genes were distributed on nine chromosomes and clustered into three subfamilies with Arabidopsis AtABF genes, AcABF2, AcABF3, AcABF8, AcABF9, and AcABF10, which have drought resistance functions, and AtABF1, AtABF2, AtABF3, and AtABF4 were clustered in Group I. The structural domains of the nine ABF genes in Group I were highly conserved, and the protein structures were highly similar. In the analysis of the five AcABF genes in Group I, all of their cis-acting elements were related to ABA, the content of ABA-like hormones was significantly increased after drought stress, and most of the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment results were related to hormonal processes. A total of six AcABF genes were upregulated under drought stress. qRT-PCR was performed to validate the AcABF genes of Group I. The correlation coefficients of the results with the transcriptome data were all above 0.70, and the expression level of ABA increased under drought treatment. These results indicated that the five AcABF genes were positively correlated with ABA under drought stress and that, by synthesizing ABA and facilitating the expression of ABF gene family members, the tolerance of kiwifruit increased. These results provide a solid foundation for further research on improving drought tolerance in kiwifruit. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

13 pages, 1727 KiB  
Article
Simulation of the Design Performance of Carbon Fiber/Glass Fiber Hybrid-Reinforced Resin Matrix Composite Rotors
by Chong Li, Jiayou Wang, Meng Li, Haoyu Wang, Yiguo Song, Xiangzhe Meng and Ruiliang Liu
Polymers 2025, 17(12), 1668; https://doi.org/10.3390/polym17121668 - 16 Jun 2025
Viewed by 344
Abstract
Composite rotors, attributing to their leveraging characteristics of the light weight, high strength, high rigidity, corrosion resistance, and low noise, can significantly reduce the moment of inertia and enhance equipment operational efficiency. Using carbon fiber/glass fiber hybrid-reinforced resin–matrix composites as the rotor base [...] Read more.
Composite rotors, attributing to their leveraging characteristics of the light weight, high strength, high rigidity, corrosion resistance, and low noise, can significantly reduce the moment of inertia and enhance equipment operational efficiency. Using carbon fiber/glass fiber hybrid-reinforced resin–matrix composites as the rotor base material, the radial stability of a rotor can be effectively increased by regulating the fiber volume content. Meanwhile, the introduction of glass fiber not only enables the transition between the metal hub and composite rim but also optimizes the cost structure of the composite system, overcoming the economic bottleneck of single carbon fiber-reinforced resin–matrix composite rotors. This paper employs the finite element method to analyze a three-dimensional model of a composite rotor, investigating the performance of its metal hub and hybrid-reinforced resin–matrix composite rim. According to the radial stress distribution of the composite rotor during operation, the mixing ratio of carbon fiber/glass fiber is adjusted. The high-speed rotation condition of the composite rotor at 18,000 revolutions per minute is simulated to verify its safety and reliability. Full article
Show Figures

Figure 1

Back to TopTop