Effects of Ge-Doping on Thermoelectric Performance of Polycrystalline Cubic Sn0.5Ag0.25Bi0.25Se0.50Te0.50
Abstract
1. Introduction
2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef]
- Han, H.; Zhao, L.; Wu, X.; Zuo, B.; Bian, S.; Li, T.; Liu, X.; Jiang, Y.; Chen, C.; Bi, J.; et al. Advancements in thermoelectric materials: Optimization strategies for enhancing energy conversion. J. Mater. Chem. A 2024, 12, 24041–24083. [Google Scholar] [CrossRef]
- Wua, Z.; Zhang, S.; Liu, Z.; Mu, E.; Hu, Z. Thermoelectric converter: Strategies from materials to device application. Nano Energy 2022, 91, 106692. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, Y.; Zhang, H.; Qin, Y.; Wang, Z.-Y.; Zhan, S.; Liu, D.; Lin, N.; Tao, Y.; Hong, T.; et al. Large mobility enables higher thermoelectric cooling and power generation performance in n-type agpb18+xsbte20 crystals. J. Am. Chem. Soc. 2023, 145, 24931–24939. [Google Scholar] [CrossRef]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, eaak9997. [Google Scholar] [CrossRef]
- Mamur, H.; Bhuiyan, M.R.A.; Korkmaz, F.; Nil, M. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renew. Sustain. Energy Rev. 2018, 82, 4159–4169. [Google Scholar] [CrossRef]
- Saberi, Y.; Sajjadi, S.A. A comprehensive review on the effects of doping process on the thermoelectric properties of Bi2Te3 based alloys. J. Alloys Compd. 2022, 904, 163918. [Google Scholar] [CrossRef]
- Puthran, S.; Hegde, G.S.; Prabhu, A.N. Review of chalcogenide-based materials for low-, mid-, and high-temperature thermoelectric applications. J. Electron. Mater. 2024, 53, 5739–5768. [Google Scholar] [CrossRef]
- Bai, S.; Zhang, X.; Zhao, L.-D. Rethinking SnSe thermoelectrics from computational materials science. Acc. Chem. Res. 2023, 56, 3065–3075. [Google Scholar] [CrossRef]
- Siddique, S.; Abbas, G.; Yaqoob, M.M.; Zhao, J.; Chen, R.; Larsson, J.A.; Cao, Y.; Chen, Y.; Zheng, Z.; Zhang, D.; et al. Optimization of thermoelectric performance in p-type SnSe crystals through localized lattice distortions and band convergence. Adv. Sci. 2025, 12, 2411594. [Google Scholar] [CrossRef]
- Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V.P.; et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016, 351, 141–144. [Google Scholar] [CrossRef]
- Lin, N.; Han, S.; Ghosh, T.; Schön, C.F.; Kim, D.; Frank, J.; Hoff, F.; Schmidt, T.; Ying, P.; Zhu, Y.; et al. Metavalent bonding in cubic SnSe alloys improves thermoelectric properties over a broad temperature range. Adv. Funct. Mater. 2024, 1, 2315652. [Google Scholar] [CrossRef]
- Qin, B.; Wang, D.; Hong, T.; Wang, Y.; Liu, D.; Wang, Z.; Gao, X.; Ge, Z.-H.; Zhao, L.-D. High thermoelectric efficiency realized in SnSe crystals via structural modulation. Nat. Commun. 2023, 14, 1366. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, S.; Shi, H.; Cao, Q.; Qin, B.; Zhao, L. Modulating structures to decouple thermoelectric transport leads to high performance in polycrystalline SnSe. J. Mater. Chem. A 2024, 12, 144–152. [Google Scholar] [CrossRef]
- Zhu, J.; Bo, L.; Kong, J.; Hou, Y.; Zhao, L.; Li, C.; Zhao, D. Enhanced thermoelectric and mechanical properties of polycrystalline cubic snse by AgBiTe2 alloying. J. Alloys Compd. 2024, 971, 172754. [Google Scholar] [CrossRef]
- Tan, Z.; Zeng, Z.; Zhu, J.; Wang, W.; Bo, L.; Liu, X.; Li, C.; Zhao, D. Enhanced thermoelectric properties in cubic Sn0.50Ag0.25Bi0.25Se0.50Te0.50 via MWCNTs incorporation. Crystals 2025, 15, 365. [Google Scholar] [CrossRef]
- Chandra, S.; Dutta, P.; Biswas, K. High-performance thermoelectrics based on solution-grown SnSe nanostructures. ACS Nano 2021, 16, 7–14. [Google Scholar] [CrossRef]
- Shi, X.; Wu, A.; Feng, T.; Zheng, K.; Liu, W.; Sun, Q.; Hong, M.; Pantelides, S.T.; Chen, Z.-G.; Zou, J. High thermoelectric performance in p-type polycrystalline Cd-doped SnSe achieved by a combination of cation vacancies and localized lattice engineering. Adv. Energy Mater. 2019, 9, 1803242. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, K.; Hong, M.; Liu, W.; Moshwan, R.; Wang, Y.; Qu, X.; Chen, Z.-G.; Zou, J. Boosting the thermoelectric performance of p-type heavily Cu-doped polycrystalline SnSe via inducing intensive crystal imperfections and defect phonon scattering. Chem. Sci. 2018, 9, 7376–7389. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, S.; Hou, Y.; Li, S.; Wang, C.; Xiong, W.; Zhang, Q.; Miao, X.; Liu, J.; Cao, Y.; et al. Enhanced density of states facilitates high thermoelectric performance in solution-grown Ge- and In-codoped SnSe nanoplates. ACS Nano 2022, 17, 801–810. [Google Scholar] [CrossRef]
- Gong, Y.; Ying, P.; Zhang, Q.; Liu, Y.; Huang, X.; Dou, W.; Zhang, Y.; Li, D.; Zhang, D.; Feng, T.; et al. Realizing the high thermoelectric performance of highly preferentially oriented snse based nanorods via band alignment. Energy Environ. Sci. 2024, 17, 1612–1623. [Google Scholar] [CrossRef]
- Liu, M.; Guo, M.; Lyu, H.; Lai, Y.; Zhu, Y.; Guo, F.; Yang, Y.; Yu, K.; Dong, X.; Liu, Z.; et al. Doping strategy in metavalently bonded materials for advancing thermoelectric performance. Nat. Commun. 2024, 15, 8286. [Google Scholar] [CrossRef]
- Shi, X.; Wu, A.; Liu, W.; Moshwan, R.; Wang, Y.; Chen, Z.-G.; Zou, J. Polycrystalline SnSe with extraordinary thermoelectric property via nanoporous design. ACS Nano 2018, 12, 11417–11425. [Google Scholar] [CrossRef]
- Wu, J.; Chen, K.; Reece, M.J.; Huang, Z. Porous thermoelectric materials for energy conversion by thermoelectrocatalysis. Energy Technol. 2024, 1, 2400973. [Google Scholar] [CrossRef]
- Ijaz, U.; Siyar, M.; Park, C. The power of pores: Review on porous thermoelectric materials. RSC Sustain. 2024, 2, 852–870. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, J.; Bo, L.; Zhou, W.; Liu, X.; Li, C.; Zhang, Z.; Zhao, D. Synergistically optimized electronic and phonon transport properties in cubic SnSe thermoelectric materials via pb doping. Rare Met. 2025, 44, 3339–3350. [Google Scholar] [CrossRef]
- Qin, B.; Wang, D.; Liu, X.; Qin, Y.; Dong, J.-F.; Luo, J.; Li, J.-W.; Liu, W.; Tan, G.; Tang, X.; et al. Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science 2021, 373, 556–561. [Google Scholar] [CrossRef]
- Wang, Z.-C.; Jiang, X.-D.; Duan, Y.-X.; Wang, X.; Ge, Z.-H.; Cai, J.-M.; Cai, X.-M.; Tan, H.-L. P-type Sn0.98Ag0.02Se with low thermal conductivity synthesized by hydrothermal method. J. Eur. Ceram. Soc. 2024, 44, 1636–1646. [Google Scholar] [CrossRef]
- Li, C.; Lan, X.; Liu, P.; Xu, J.; Jiang, Q.; Liu, C.; Liu, C.; Jiang, F. Core/hybrid-shell structures boost thermoelectric performance of flexible inorganic/organic nanowire films. Nano Res. 2023, 16, 5702–5708. [Google Scholar] [CrossRef]
- Sun, P.; Li, C.; Xu, J.; Jiang, Q.; Wang, W.; Liu, J.; Zhao, F.; Ding, Y.; Hou, J.; Jiang, F. Effect of Sn element on optimizing thermoelectric performance of Te nanowires. Sustain. Energy Fuels 2018, 2, 2636–2643. [Google Scholar] [CrossRef]
- Mandal, P.; Maitra, S.; Ghorui, U.K.; Chakraborty, P.; Adhikary, B.; Banerjee, D. Effects of co-doping on tin selenide nanomaterials to enhance the thermoelectric performance above the ambient temperature range. J. Mater. Chem. C 2023, 11, 8577–8589. [Google Scholar] [CrossRef]
- Yu, J.; Li, F.; Zhu, J.; Hao, M.; Li, C.; Zhao, D. Modulating structures and nanocomposites to boost thermoelectric properties of polycrystalline SnSe by Ag/In co-doping. J. Mater. Eng. Perform. 2025. [Google Scholar] [CrossRef]
x | Density (g/cm3) | Relative Density (%) | n (1021 cm−3) | μ (cm2 V−1 s−1) |
---|---|---|---|---|
0 | 6.70 | 97.95 | 1.11 | 5.72 |
0.02 | 6.67 | 97.53 | 2.29 | 2.89 |
0.04 | 6.73 | 98.35 | 4.66 | 1.39 |
0.06 | 6.77 | 98.98 | 4.77 | 1.47 |
0.08 | 6.63 | 96.83 | 3.07 | 2.34 |
0.10 | 6.69 | 97.72 | 5.43 | 1.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhu, J.; Zhu, Z.; Bo, L.; Wang, W.; Liu, X.; Li, C.; Zhao, D. Effects of Ge-Doping on Thermoelectric Performance of Polycrystalline Cubic Sn0.5Ag0.25Bi0.25Se0.50Te0.50. Crystals 2025, 15, 622. https://doi.org/10.3390/cryst15070622
Zhao H, Zhu J, Zhu Z, Bo L, Wang W, Liu X, Li C, Zhao D. Effects of Ge-Doping on Thermoelectric Performance of Polycrystalline Cubic Sn0.5Ag0.25Bi0.25Se0.50Te0.50. Crystals. 2025; 15(7):622. https://doi.org/10.3390/cryst15070622
Chicago/Turabian StyleZhao, Haoyu, Junliang Zhu, Zhonghe Zhu, Lin Bo, Wenying Wang, Xingshuo Liu, Changcun Li, and Degang Zhao. 2025. "Effects of Ge-Doping on Thermoelectric Performance of Polycrystalline Cubic Sn0.5Ag0.25Bi0.25Se0.50Te0.50" Crystals 15, no. 7: 622. https://doi.org/10.3390/cryst15070622
APA StyleZhao, H., Zhu, J., Zhu, Z., Bo, L., Wang, W., Liu, X., Li, C., & Zhao, D. (2025). Effects of Ge-Doping on Thermoelectric Performance of Polycrystalline Cubic Sn0.5Ag0.25Bi0.25Se0.50Te0.50. Crystals, 15(7), 622. https://doi.org/10.3390/cryst15070622