A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496
Abstract
1. Introduction
2. Materials and Methods
2.1. Strain and Growth Conditions
2.2. Bioinformatics Analysis
2.3. S. thermophilus M17PTZA496 Prophage Induction Assay, DNA Extraction, Semi-Quantitative PCR, and Transmission Electron Microscopy
2.4. Phage-Susceptibility Screening, and Phage-Binding Assay
2.5. Transcriptional Activity Assay
2.6. Statistical Analysis
3. Results
3.1. Genomic Analysis of the S. thermophilus M17PTZA496 Prophages
3.2. Prophage Induction Evaluation
3.3. S. thermophilus M17PTZA496 Phage-Susceptibility Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Calasso, M.; Ercolini, D.; Mancini, L.; Stellato, G.; Minervini, F.; Di Cagno, R.; De Angelis, M.; Gobbetti, M. Relationships among house, rind and core microbiotas during manufacture of traditional Italian cheeses at the same dairy plant. Food Microbiol. 2016, 54, 115–126. [Google Scholar] [CrossRef]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Maragkoudakis, P.A.; Nardi, T.; Bovo, B.; D’Andrea, M.; Howell, K.S.; Giacomini, A.; Corich, V. Biodiversity, dynamics and ecology of bacterial community during grape marc storage for the production of grappa. Int. J. Food Microbiol. 2013, 162, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Coton, E.; Leguerinel, I. Ecology of Bacteria and Fungi in Foods | Effects of pH. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; pp. 577–586. [Google Scholar]
- Bovo, B.; Giacomini, A.; Corich, V. Effects of grape marcs acidification treatment on the evolution of indigenous yeast populations during the production of grappa. J. Appl. Microbiol. 2011, 111, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Dantigny, P.; Burgain, A.; Deniel, F.; Bensoussan, M. A model for the effect of pH on the growth of chalk yeasts. Int. J. Food Microbiol. 2014, 186, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Hutkins, R.W. Microbiology and Technology of Fermented Foods; Wiley-Blackwell: Hoboken, NJ, USA, 2007; ISBN 0813800188. [Google Scholar]
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Marcó, M.B.; Moineau, S.; Quiberoni, A. Bacteriophages and dairy fermentations. Bacteriophage 2012, 2, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Bruttin, A.; Desiere, F.; D’Amico, N.; Guérin, J.P.; Sidoti, J.; Huni, B.; Lucchini, S.; Brüssow, H. Molecular ecology of Streptococcus thermophilus bacteriophage infections in a cheese factory. Appl. Environ. Microbiol. 1997, 63, 3144–3150. [Google Scholar]
- Moineau, S.; Lévesque, C. Control of Bacteriophages in Industrial Fermentations. In Bacteriophages; CRC Press: Boca Raton, FL, USA, 2004; pp. 285–296. ISBN 0849313368. [Google Scholar]
- Garneau, J.E.; Moineau, S. Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb. Cell Fact. 2011, 10, S20. [Google Scholar] [CrossRef]
- McDonnell, B.; Mahony, J.; Hanemaaijer, L.; Kouwen, T.R.H.M.; van Sinderen, D. Generation of bacteriophage-insensitive mutants of Streptococcus thermophilus via an antisense RNA CRISPR-Cas silencing approach. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef]
- Szymczak, P.; Janzen, T.; Neves, A.R.; Kot, W.; Hansen, L.H.; Lametsch, R.; Neve, H.; Franz, C.M.A.P.; Vogensen, F.K. Novel Variants of Streptococcus thermophilus Bacteriophages Are Indicative of Genetic Recombination among Phages from Different Bacterial Species. Appl. Environ. Microbiol. 2017, 83, e02748-16. [Google Scholar] [CrossRef] [PubMed]
- Ali, Y.; Koberg, S.; Heßner, S.; Sun, X.; Rabe, B.; Back, A.; Neve, H.; Heller, K.J. Temperate Streptococcus thermophilus phages expressing superinfection exclusion proteins of the Ltp type. Front. Microbiol. 2014, 5, 98. [Google Scholar] [CrossRef] [PubMed]
- Hille, F.; Richter, H.; Wong, S.P.; Bratovič, M.; Ressel, S.; Charpentier, E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018, 172, 1239–1259. [Google Scholar] [CrossRef] [PubMed]
- Foley, S.; Lucchini, S.; Zwahlen, M.C.; Brüssow, H. A short noncoding viral DNA element showing characteristics of a replication origin confers bacteriophage resistance to Streptococcus thermophilus. Virology 1998, 250, 377–387. [Google Scholar] [CrossRef]
- Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005, 151, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Cumby, N.; Davidson, A.R.; Maxwell, K.L. The moron comes of age. Bacteriophage 2012, 2, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Göhler, A.; Heller, K.J.; Neve, H. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology 2006, 350, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Lamothe, G.; Lévesque, C.; Bissonnette, F.; Cochu, A.; Vadeboncoeur, C.; Frenette, M.; Duplessis, M.; Tremblay, D.; Moineau, S. Characterization of the cro-ori region of the Streptococcus thermophilus virulent bacteriophage DT1. Appl. Environ. Microbiol. 2005, 71, 1237–1246. [Google Scholar] [CrossRef]
- Tarrah, A.; Noal, V.; Treu, L.; Giaretta, S.; da Silva Duarte, V.; Corich, V.; Giacomini, A. Short communication: Comparison of growth kinetics at different temperatures of Streptococcus macedonicus and Streptococcus thermophilus strains of dairy origin. J. Dairy Sci. 2018. [Google Scholar] [CrossRef]
- Tarrah, A.; Noal, V.; Giaretta, S.; Treu, L.; da Silva Duarte, V.; Corich, V.; Giacomini, A. Effect of different initial pH on the growth of Streptococcus macedonicus and Streptococcus thermophilus strains. Int. Dairy J. 2018, 86, 65–68. [Google Scholar] [CrossRef]
- Tarrah, A.; Treu, L.; Giaretta, S.; Duarte, V.; Corich, V.; Giacomini, A. Differences in Carbohydrates Utilization and Antibiotic Resistance Between Streptococcus macedonicus and Streptococcus thermophilus Strains Isolated from Dairy Products in Italy. Curr. Microbiol. 2018. [Google Scholar] [CrossRef]
- Tarrah, A.; de Castilhos, J.; Rossi, R.C.; da Duarte, V.S.; Ziegler, D.R.; Corich, V.; Giacomini, A. In vitro Probiotic Potential and Anti-cancer Activity of Newly Isolated Folate-Producing Streptococcus thermophilus Strains. Front. Microbiol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Krusch, U.; Neve, H.; Luschei, B.; Teuber, M. Characterization of virulent bacteriophages of Streptococcus salivarius subsp. thermophilus by host specificity and electron microscopy. Kieler Milchwirtschaftliche Forschungsberichte 1987, 39, 155–167. [Google Scholar]
- Treu, L.; Vendramin, V.; Bovo, B.; Campanaro, S.; Corich, V.; Giacomini, A. Genome sequences of Streptococcus thermophilus strains MTH17CL396 and M17PTZA496 from fontina, an Italian PDO cheese. Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [PubMed]
- Vendramin, V.; Treu, L.; Campanaro, S.; Lombardi, A.; Corich, V.; Giacomini, A. Genome comparison and physiological characterization of eight Streptococcus thermophilus strains isolated from Italian dairy products. Food Microbiol. 2017, 63, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Finn, R.D.; Attwood, T.K.; Babbitt, P.C.; Bateman, A.; Bork, P.; Bridge, A.J.; Chang, H.-Y.; Dosztányi, Z.; El-Gebali, S.; Fraser, M.; et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 2016, gkw1107. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, 181–184. [Google Scholar] [CrossRef]
- Ågren, J.; Sundström, A.; Håfström, T.; Segerman, B. Gegenees: Fragmented alignment of multiple genomes for determining phylogenomic distances and genetic signatures unique for specified target groups. PLoS ONE 2012. [Google Scholar] [CrossRef]
- Barylski, J.; Nowicki, G.; Goździcka-Józefiak, A. The discovery of phiAGATE, a novel phage infecting Bacillus pumilus, leads to new insights into the phylogeny of the subfamily Spounavirinae. PLoS ONE 2014. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus taxonomy: The database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Arioli, S.; Eraclio, G.; Della Scala, G.; Neri, E.; Colombo, S.; Scaloni, A.; Fortina, M.G.; Mora, D. Role of Temperate Bacteriophage ϕ20617 on Streptococcus thermophilus DSM 20617T Autolysis and Biology. Front. Microbiol. 2018, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011. [Google Scholar] [CrossRef] [PubMed]
- Grissa, I.; Vergnaud, G.; Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform. 2007, 8, 172. [Google Scholar] [CrossRef] [PubMed]
- Villarroel, J.; Kleinheinz, K.A.; Jurtz, V.I.; Zschach, H.; Lund, O.; Nielsen, M.; Larsen, M.V. HostPhinder: A phage host prediction tool. Viruses 2016, 8, 116. [Google Scholar] [CrossRef]
- Oliveira, J.; Mahony, J.; Hanemaaijer, L.; Kouwen, T.R.H.M.; Neve, H.; MacSharry, J.; van Sinderen, D. Detecting Lactococcus lactis Prophages by Mitomycin C-Mediated Induction Coupled to Flow Cytometry Analysis. Front. Microbiol. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- NCBI/Primer-BLAST. Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast (accessed on 25 September 2018).
- Conte, M.; Vasuri, F.; Bertaggia, E.; Armani, A.; Santoro, A.; Bellavista, E.; Degiovanni, A.; D’Errico-Grigioni, A.; Trisolino, G.; Capri, M.; et al. Differential expression of perilipin 2 and 5 in human skeletal muscle during aging and their association with atrophy-related genes. Biogerontology 2015, 16, 329–340. [Google Scholar] [CrossRef]
- da Silva Duarte, V.; Giaretta, S.; Treu, L.; Campanaro, S.; Pereira Vidigal, P.M.; Tarrah, A.; Giacomini, A.; Corich, V. Draft Genome Sequences of Three Virulent Streptococcus thermophilus Bacteriophages Isolated from the Dairy Environment in the Veneto Region of Italy. Genome Announc. 2018, 6. [Google Scholar] [CrossRef]
- Binetti, A.G.; Del Rio, B.; Martin, M.C.; Alvarez, M.A. Detection and Characterization of Streptococcus thermophilus Bacteriophages by Use of the Antireceptor Gene Sequence. Appl. Environ. Microbiol. 2005, 71, 6096–6103. [Google Scholar] [CrossRef] [PubMed]
- Svensson, U.; Christiansson, A. Methods for phage monitoring [easy to use in dairy laboratories]. Bull. Int. Dairy Fed. 1991, 263, 29–39. [Google Scholar]
- Quiberoni, A.; Tremblay, D.; Ackermann, H.-W.; Moineau, S.; Reinheimer, J.A. Diversity of Streptococcus thermophilus phages in a large-production cheese factory in Argentina. J. Dairy Sci. 2006, 89, 3791–3799. [Google Scholar] [CrossRef]
- Valyasevi, R.; Sandine, W.E.; Geller, B.L. The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide. Appl. Environ. Microbiol. 1990, 56, 1882–1889. [Google Scholar] [PubMed]
- Kropinski, A.M. Measurement of the Rate of Attachment of Bacteriophage to Cells. Methods Mol. Biol. 2009, 501, 151–155. [Google Scholar] [PubMed]
- Naghili, H.; Tajik, H.; Mardani, K.; Razavi Rouhani, S.M.; Ehsani, A.; Zare, P. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. Vet. Res. Forum Int. Q. J. 2013, 4, 179–183. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Chopin, A.; Bolotin, A.; Sorokin, A.; Ehrlich, S.D.; Chopin, M. Analysis of six prophages in Lactococcus lactis IL1403: Different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 2001, 29, 644–651. [Google Scholar] [CrossRef]
- Catalão, M.J.; Gil, F.; Moniz-Pereira, J.; São-José, C.; Pimentel, M. Diversity in bacterial lysis systems: Bacteriophages Show the way. FEMS Microbiol. Rev. 2013, 37, 554–571. [Google Scholar] [CrossRef]
- Fouts, D.E. Phage_Finder: Automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res. 2006, 34, 5839–5851. [Google Scholar] [CrossRef]
- Brüssow, H.; Probst, A.; Frémont, M.; Sidoti, J. Distinct Streptococcus thermophilus Bacteriophages Share an Extremely Conserved DNA Fragment. Virology 1994. [Google Scholar] [CrossRef] [PubMed]
- Le Marrec, C.; Van Sinderen, D.; Walsh, L.; Stanley, E.; Vlegels, E.; Moineau, S.; Heinze, P.; Fitzgerald, G.; Fayard, B. Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Appl. Environ. Microbiol. 1997. [Google Scholar] [CrossRef]
- McDonnell, B.; Mahony, J.; Neve, H.; Hanemaaijer, L.; Noben, J.P.; Kouwen, T.; van Sinderen, D. Identification and analysis of a novel group of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus. Appl. Environ. Microbiol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Mahony, J.; Martel, B.; Tremblay, D.M.; Neve, H.; Heller, K.J.; Moineau, S.; Van Sinderen, D. Identification of a new P335 subgroup through molecular analysis of lactococcal phages Q33 and BM13. Appl. Environ. Microbiol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Ravin, N.V.; Svarchevsky, A.N.; Dehò, G. The anti-immunity system of phage-plasmid N15: Identification of the antirepressor gene and its control by a small processed RNA. Mol. Microbiol. 1999. [Google Scholar] [CrossRef]
- Tarrah, A.; Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, 35020 Legnaro, Italy. Page induction tests using low concentrations of Mitomycin C. 2018. [Google Scholar]
- Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011, 39, 9275–9282. [Google Scholar] [CrossRef] [PubMed]
- Seed, K.D. Battling Phages: How Bacteria Defend against Viral Attack. PLoS Pathog. 2015, 11, e1004847. [Google Scholar] [CrossRef] [PubMed]
- Pare, K.R. Bacterial toxin-antitoxin systems. Mob. Genet. Elements 2011, 1, 283–290. [Google Scholar] [CrossRef]
- Hols, P.; Hancy, F.; Fontaine, L.; Grossiord, B.; Prozzi, D.; Leblond-Bourget, N.; Decaris, B.; Bolotin, A.; Delorme, C.; Dusko Ehrlich, S.; et al. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol. Rev. 2005, 29, 435–463. [Google Scholar] [CrossRef]
- Beumer, A.; Robinson, J.B. A Broad-Host-Range, Generalized Transducing Phage (SN-T) Acquires 16S rRNA Genes from Different Genera of Bacteria. Appl. Environ. Microbiol. 2005, 71, 8301–8304. [Google Scholar] [CrossRef]
- Watson, B.N.J.; Staals, R.H.J.; Fineran, P.C. CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction. mBio 2018, 9, e02406-17. [Google Scholar] [CrossRef]
- Brussow, H.; Fremont, M.; Bruttin, A.; Sidoti, J.; Constable, A.; Fryder, V. Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Appl. Environ. Microbiol. 1994, 60, 4537–4543. [Google Scholar] [PubMed]
- Canchaya, C.; Proux, C.; Fournous, G.; Bruttin, A.; Brüssow, H. Prophage genomics. Microbiol. Mol. Biol. Rev. 2003, 67, 238–276. [Google Scholar] [CrossRef] [PubMed]
- Achigar, R.; Magadan, A.H.; Tremblay, D.M.; Julia Pianzzola, M.; Moineau, S. Phage-host interactions in Streptococcus thermophilus: Genome analysis of phages isolated in Uruguay and ectopic spacer acquisition in CRISPR array. Sci. Rep. 2017, 7, 43438. [Google Scholar] [CrossRef]
- Vohradsky, J. Lambda phage genetic switch as a system with critical behaviour. J. Theor. Biol. 2017, 431, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Schubert, R.A.; Dodd, I.B.; Egan, J.B.; Shearwin, K.E. Cro’s role in the CI Cro bistable switch is critical for {lambda}’s transition from lysogeny to lytic development. Genes Dev. 2007, 21, 2461–2472. [Google Scholar] [CrossRef]
- Lévesque, C.; Duplessis, M.; Labonté, J.; Labrie, S.; Fremaux, C.; Tremblay, D.; Moineau, S. Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl. Environ. Microbiol. 2005, 71, 4057–4068. [Google Scholar] [CrossRef]
- Stanley, E.; Fitzgerald, G.F.; Marrec, C.L.; Fayard, B.; van Sinderen, D. Sequence analysis and characterization of ∅O1205, a temperate bacteriophage infecting Streptococcus thermophilus CNRZ1205. Microbiology 1997. [Google Scholar] [CrossRef] [PubMed]
- Deveau, H.; Barrangou, R.; Garneau, J.E.; Labonte, J.; Fremaux, C.; Boyaval, P.; Romero, D.A.; Horvath, P.; Moineau, S. Phage Response to CRISPR-Encoded Resistance in Streptococcus thermophilus. J. Bacteriol. 2008, 190, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Lucchini, S.; Desiere, F.; Ssow, H.B. Comparative Genomics of Streptococcus thermophilus Phage Species Supports a Modular Evolution Theory. J. Virol. 1999. [Google Scholar] [CrossRef]
- Guglielmotti, D.M.; Deveau, H.; Binetti, A.G.; Reinheimer, J.A.; Moineau, S.; Quiberoni, A. Genome analysis of two virulent Streptococcus thermophilus phages isolated in Argentina. Int. J. Food Microbiol. 2009, 136, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Kim, Y.; Ma, Q.; Hong, S.H.; Pokusaeva, K.; Sturino, J.M.; Wood, T.K. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 2010, 1, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.C.; Huang, S.C.; Chiu, C.H.; Chen, Y.Y.M. YMC-2011, a temperate phage of Streptococcus salivarius 57.I. Appl. Environ. Microbiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Gao, S.; Kondabagil, K.; Xiang, Y.; Rossmann, M.G.; Rao, V.B. Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages. Proc. Natl. Acad. Sci. USA 2012, 109, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Bull, J.J.; Vegge, C.S.; Schmerer, M.; Chaudhry, W.N.; Levin, B.R. Phenotypic resistance and the dynamics of bacterial escape from phage control. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Płachetka-Bożek, A.; Augustyniak, M. Evaluation of Candidate Reference Genes for Quantitative Gene Expression Analysis in Spodoptera exigu a after Long-time Exposure to Cadmium. Sci. Rep. 2017, 7, 8338. [Google Scholar] [CrossRef] [PubMed]
- Young, N.J.; Thomas, C.J.; Collins, M.E.; Brownlie, J. Real-time RT-PCR detection of Bovine Viral Diarrhoea virus in whole blood using an external RNA reference. J. Virol. Methods 2006. [Google Scholar] [CrossRef]
- Hill, C.; Miller, L.A.; Klaenhammer, T.R. Cloning, expression, and sequence determination of a bacteriophage fragment encoding bacteriophage resistance in Lactococcus lactis. J. Bacteriol. 1990, 172, 6419–6426. [Google Scholar] [CrossRef]
- Madsen, S.M.; Mills, D.; Djordjevic, G.; Israelsen, H.; Klaenhammer, T.R. Analysis of the Genetic Switch and Replication Region of a P335-Type Bacteriophage with an Obligate Lytic Lifestyle on Lactococcus lactis. Appl. Environ. Microbiol. 2001, 67, 1128–1139. [Google Scholar] [CrossRef]
- Vale, P.F.; Lafforgue, G.; Gatchitch, F.; Gardan, R.; Moineau, S.; Gandon, S. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus. Proceedings. Biol. Sci. 2015, 282, 20151270. [Google Scholar] [CrossRef]
- Breivik, J.; Gaudernack, G. Resolving the evolutionary paradox of genetic instability: A cost-benefit analysis of DNA repair in changing environments. FEBS Lett. 2004, 563, 7–12. [Google Scholar] [CrossRef]
Primer | Sequence (5’ → 3’) | Reference | Genome position (bp) |
---|---|---|---|
PhageCntr_FW | CCAGCTCGCAAACAACTTGG | This study | 644,332–645,130 |
PhageCntr_REV | CAGCGTTAACTGTGTTGTCAG | ||
attL_FW | CACGCTGCTAACTCAATCCT | This study | 620,880–621,469 |
attL_REV | GCTCTTTGGATATCCACACC | ||
attR_FW | CTACGTAGTCAGAGGTCCG | This study | 664,158–664,626 |
attR_REV | GATTAAAGGCCTATTCTAAGCC | ||
M17ptza496_S71U_FW | GCAACCATTACACACATAAGGT | This study | 297,265–304,822 |
M17ptza496_S71U_REV | CACAGCGACATCTATCATTGG | ||
cas7_FW_1 | AGGAGCCTACCATACTTGATG | This study | 697,396–698,448 |
cas7_REV_1 | GTAAGCGTGGGCAAGTGTTC | ||
ltp_FW_4 | ACTAGCAAGACGTCAGAGGC | This study | 697,265–697,399 |
ltp_REV_4 | CTGCTTAGCTTTCTCACCG | ||
NC_FW_5 | CAACTTACAGACCAGACAAGG | This study | 626,422–626,895 |
NC_REV_5 | CCTCAATATGCTTACCGGAC | ||
Terminase large subunit_FW_2 | CATGGTGCTAAACGTGCTGG | This study | 639,113–639,784 |
Terminase large subunit_REV_2 | GCAGGTACATCGTCAACGTC | ||
gapdh_FW | CACCATCTTCCAGGAGCGAG | Conte et al. (2015) [43] | (not determined) |
gapdh_REV | CACCATCTTCCAGGAGCGAG |
cas7 | ltp | Siphovirus Gp157 | Terminase Large Subunit | |||||
---|---|---|---|---|---|---|---|---|
Conditions | p-value | X-fold | p-value | X-fold | p-value | X-fold | p-value | X-fold |
Cntr1 vs Pt1 | 0.093 | 0.50 | 0.012 | 0.40 | 0.016 | 0.40 | 0.012 | 0.40 |
Pt2 vs Cntr2 | 0.154 | 1.80 | 0.022 | 2.20 | 0.756 | 1.10 | 0.026 | 1.75 |
Cntr1 vs Cntr2 | 0.025 | 0.40 | 0.320 | 0.70 | 0.250 | 0.80 | 0.000 | 0.15 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Da Silva Duarte, V.; Giaretta, S.; Campanaro, S.; Treu, L.; Armani, A.; Tarrah, A.; Oliveira de Paula, S.; Giacomini, A.; Corich, V. A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496. Viruses 2019, 11, 7. https://doi.org/10.3390/v11010007
Da Silva Duarte V, Giaretta S, Campanaro S, Treu L, Armani A, Tarrah A, Oliveira de Paula S, Giacomini A, Corich V. A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496. Viruses. 2019; 11(1):7. https://doi.org/10.3390/v11010007
Chicago/Turabian StyleDa Silva Duarte, Vinícius, Sabrina Giaretta, Stefano Campanaro, Laura Treu, Andrea Armani, Armin Tarrah, Sérgio Oliveira de Paula, Alessio Giacomini, and Viviana Corich. 2019. "A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496" Viruses 11, no. 1: 7. https://doi.org/10.3390/v11010007
APA StyleDa Silva Duarte, V., Giaretta, S., Campanaro, S., Treu, L., Armani, A., Tarrah, A., Oliveira de Paula, S., Giacomini, A., & Corich, V. (2019). A Cryptic Non-Inducible Prophage Confers Phage-Immunity on the Streptococcus thermophilus M17PTZA496. Viruses, 11(1), 7. https://doi.org/10.3390/v11010007