Neighborhood Environment, Internet Use and Mental Distress among Older Adults: The Case of Shanghai, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Measurement
2.2.1. Dependent Variable
2.2.2. Independent Variables
2.2.3. Control Variables
2.2.4. Analysis Strategy
3. Results
3.1. Mental Distress and Individual-Level Variables
3.2. Mental Health and Neighborhood Environment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tencent Company. Mobile Internet Report for Elderly Users. 2018. Available online: https://www.sohu.com/a/231859559_300488 (accessed on 3 April 2020).
- Zickuhr, K.; Madden, M. Older Adults and Internet Use: For the First Time, Half of Adults Ages 65 and Older Are Online. Pew Internet & American Life Project: Washington, DC, USA, 2012. Available online: http://pewinternet.org/~/media//Files/Reports/2012/PIP_Older_adults_and_internet_use.pdf (accessed on 3 April 2020).
- Davis, R.A. A cognitive-behavioral model of pathological Internet use. Comput. Hum. Behav. 2001, 17, 187–195. [Google Scholar] [CrossRef]
- Brailovskaia, J.; Margraf, J. Comparing Facebook users and Facebook non-users: Relationship between personality traits and mental health variables—An exploratory study. PLoS ONE 2016, 11, e0166999. [Google Scholar] [CrossRef] [PubMed]
- Muscanell, N.; Guadagno, R. Make new friends or keep the old: Gender and personality differences in social networking use. Comput. Hum. Behav. 2012, 28, 107–112. [Google Scholar] [CrossRef]
- Johnston, K.; Tanner, M.; Lalla, N.; Kawalski, D. Social capital: The benefit of Facebook ‘friends’. Behav. Inf. Technol. 2013, 32, 26–32. [Google Scholar] [CrossRef]
- Wang, J.L.; Jackson, L.A.; Gaskin, J.; Wang, H.Z. The effects of Social Networking Site (SNS) use on college students’ friendship and well-being. Comput. Hum. Behav. 2014, 37, 229–236. [Google Scholar] [CrossRef]
- Nadkarni, A.; Hofmann, S.G. Why do people use Facebook? Personal. Individ. Differ. 2012, 52, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Duplaga, M.; Szulc, K. The Association of Internet Use with Wellbeing, Mental Health and Health Behaviours of Persons with Disabilities. Int. J. Environ. Res. Public Health 2019, 16, 3252. [Google Scholar] [CrossRef] [PubMed]
- Sigurvinsdottir, R.; Gylfason, H.F. The Impact of COVID-19 on Mental Health: The Role of Locus on Control and Internet Use. Int. J. Environ. Res. Public Health 2020, 17, 6985. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H. Internet use and mental health problems among older people in Shanghai, China: The moderating roles of chronic diseases and household income. Aging Ment. Health 2021, 25, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.; Algorta, G. The relationship between online social networking and depression: A systematic review of quantitative studies. Cyberpsychol. Behav. Soc. Netw. 2016, 19, 638–649. [Google Scholar] [CrossRef] [PubMed]
- Shakya, H.; Christakis, N. Association of Facebook use with compromised well-being: A longitudinal study. Am. J. Epidemiol. 2017, 185, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Tandoc, E.; Ferrucci, P.; Duffy, M. Facebook use, envy, and depression among college students: Is facebooking depressing? Comput. Hum. Behav. 2015, 43, 139–146. [Google Scholar] [CrossRef]
- Salicetia, F. Internet addiction disorder. Soc. Behav. Sci. 2015, 191, 1372–1376. [Google Scholar] [CrossRef]
- Wartberg, L.; Kammerl, R. Empirical Relationships between Problematic Alcohol Use and a Problematic Use of Video Games, Social Media and the Internet and Their Associations to Mental Health in Adolescence. Int. J. Environ. Res. Public Health 2020, 17, 6098. [Google Scholar] [CrossRef]
- Tan, Y.; Chen, Y.; Lu, Y.; Li, L. Exploring Associations between Problematic Internet Use, Depressive Symptoms and Sleep Disturbance among Southern Chinese Adolescents. Int. J. Environ. Res. Public Health 2016, 13, 313. [Google Scholar] [CrossRef] [PubMed]
- Krasnova, H.; Wenninger, H.; Widjaja, T.; Bruxmann, P. Envy on Facebook: A hidden threat to users’ life satisfaction? In Proceedings of the 11th International Conference on Wirtschaftsinformatik (WI2013), Universität Leipzig, Germany, 27 Februayr–1 March 2013; p. 92. [Google Scholar]
- Choi, N.; DiNhto, D.; Eysenbach, G. Internet use among older adults: Association with health needs, psychological capital and social capital. J. Med. Internet Res. 2013, 15, e97. [Google Scholar] [CrossRef]
- Cresci, M.; Jarosz, P.; Templin, T. Are health answers online for older adults? Educ. Gerontol. 2012, 38, 10–19. [Google Scholar] [CrossRef]
- Porter, C.; Donthu, N. Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics. J. Bus. Res. 2006, 59, 999–1007. [Google Scholar] [CrossRef]
- Hunsaker, A.; Hargittai, E. A review of Internet use among older adults. New Med. Soc. 2018, 20, 3937–3954. [Google Scholar] [CrossRef]
- Perkins, E.; LaMartin, K. The Internet as social support for older carers of adults with intellectual disabilities. J. Policy Pract. Intellect. Disabil. 2012, 9, 53–62. [Google Scholar] [CrossRef]
- Sum, S.; Mathews, R.; Hughes, I. Participation of older adults in cyberspace: How Australian older adults use the Internet. Australas. J. Ageing 2009, 28, 189–193. [Google Scholar] [CrossRef] [PubMed]
- George, L.; Okun, M.; Landerman, R. Age as a moderator of the determinants of life satisfaction. Res. Aging 1985, 7, 209–233. [Google Scholar] [CrossRef] [PubMed]
- Kessler, R.; Berglund, P.; Demler, O.; Jin, R.; Walters, E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication (NCS-R). Arch. Gen. Psychiatry 2005, 62, 593–602. [Google Scholar] [CrossRef]
- Mair, C.; Diez Roux, A.; Galea, S. Are neighbourhood characteristics associated with depressive symptoms? A review of evidence. J. Epidemiol. Community Health 2008, 62, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y.; Shen, H.; Morrow-Howell, N. Neighborhood and Depressive Symptoms: A Comparison of Rural and Urban Chinese Older Adults. Gerontologist 2018, 58, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Yang, J.; Chai, Y. The Anatomy of Health-Supportive Neighborhoods: A Multilevel Analysis of Built Environment, Perceived Disorder, Social Interaction and Mental Health in Beijing. Int. J. Environ. Res. Public Health 2020, 17, 13. [Google Scholar] [CrossRef]
- Miao, J.; Wu, X.; Sun, X. Neighborhood, social cohesion, and the Elderly’s depression in Shanghai. Soc. Sci. Med. 2019, 229, 134–143. [Google Scholar] [CrossRef]
- Glass, T.; Balfour, J. Neighborhoods, aging, and functional limitations. In Neighborhoods and Health; Kawachi, I., Berkman, L., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 303–334. [Google Scholar]
- Van Dijk, J.; Hacker, K. The digital divide as a complex and dynamic phenomenon. Inf. Soc. 2003, 19, 315–326. [Google Scholar] [CrossRef]
- Liu, Q.; Pan, H.; Wu, Y. Migration Status, Internet Use, and Social Participation among Middle-Aged and Older Adults in China: Consequences for Depression. Int. J. Environ. Res. Public Health 2020, 17, 6007. [Google Scholar] [CrossRef] [PubMed]
- Wellman, B.; Quan-Haase, A.; Witte, J.; Hampton, K. Does the Internet Increase, Decrease, or Supplement Social Capital. Am. Behav. Sci. 2001, 45, 436–455. [Google Scholar] [CrossRef]
- Hampton, K.; Wellman, B. Neighboring in Netville: How the Internet Supports Community and Social Capital in a Wired Suburb. City Community 2003, 2, 277–311. [Google Scholar] [CrossRef]
- Nyqvist, F.; Forsman, A.; Giuntoli, G.; Cattan, M. Social capital as a resource for mental well-being in older people: A systematic review. Aging Ment. Health 2013, 17, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Liu, Y.; Liu, Y.; Li, Z. Exploring the Linkage between the Neighborhood Environment and Mental health in Guangzhou, China. Int. J. Environ. Res. Public Health 2019, 16, 3206. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Qin, B. Exploring the link between neighborhood environment and mental wellbeing: A case study in Beijing, China. Landsc. Urban Plan. 2017, 164, 71–80. [Google Scholar] [CrossRef]
- Shanghai Municipal Statistics Bureau. 2017 Shanghai Statistical Yearbook; China Statistics Press: Beijing, China, 2017. [Google Scholar]
- Derogatis, L. SCL-90-R: Administration, Scoring and Procedures Manual; Clinical Psychometric Research: Baltimore, MD, USA, 1977. [Google Scholar]
- Xin, S.; Jiang, W.; Xin, Z. Changes in Chinese nurses’ mental health during 1998–2016: A cross-temporal meta-analysis. Stress Health 2019, 35, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.; Zhang, M. Changes in Chinese middle school students’ mental health (1992~2005): A cross-temporal meta-analysis. Acta Psychol. Sin. 2009, 41, 69–78. [Google Scholar] [CrossRef]
- Lei, D.; Rattia, C.; Zheng, S. Predicting neighborhoods’ socioeconomic attributes using restaurant data. Proc. Natl. Acad. Sci. USA 2019, 116, 15447–15452. [Google Scholar]
- Arcaya, M.C.; Tucker-Seeley, R.D.; Kim, R.; Schnake-Mahl, A.; So, M.; Subramanian, S.V. Research on neighborhood effects on health in the United States: A systematic review of study characteristics. Soc. Sci. Med. 2016, 168, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Aneshensel, C.S.; Wight, R.G.; Miller-Martinez, D.; Botticello, A.L.; Karlmangla, A.S.; Seeman, T.E. Urban neighborhoods and depressive symptoms among older adults. J. Gerontol. Soc. Sci. 2007, 62B, S52–S59. [Google Scholar] [CrossRef]
- Višnjić, A.; Veličković, V.; Sokolović, D.; Stanković, M.; Mijatović, K.; Stojanović, M.; Milošević, Z.; Radulović, O. Relationship between the Manner of Mobile Phone Use and Depression, Anxiety, and Stress in University Students. Int. J. Environ. Res. Public Health 2018, 15, 697. [Google Scholar] [CrossRef] [PubMed]
Variable | Definition | Mean | S.D. |
---|---|---|---|
Mental distress | Sum of 10 items on mental distress | 3.27 | 4.70 |
Internet use | The principal component factor of four items on using the Internet | 0 | 1 |
NSES | The principal component factor of 5 items on the neighborhood socioeconomic status | 0 | 0.97 |
NI | the mean of FVN in each community based on the sample of 7226 adults | 4.80 | 1.08 |
FVN | the frequency of visiting or chatting with neighbors | 5.47 | 3.19 |
Age | Aged from 60 to 79 | 66.91 | 5.06 |
Education | Years of education | 10.01 | 3.38 |
Household income | Total household income in 2016, measured on a 11-point scale (under 7000 to 500,000 or over) with the median being “50,000 to 99,999” | 6.06 | 1.89 |
Being married | Married = 1; unmarried = 0 | 0.87 | 0.34 |
Housing tenure | Yes = 1; No = 0 | 0.86 | 0.35 |
Hukou type | Local (=1) vs. nonlocal (=0) | 0.92 | 0.27 |
Gender | Male = 1; Female = 0 | 0.49 | 0.50 |
CCPM | Yes = 1; No = 0 | 0.21 | 0.41 |
Chronic Diseases | Number of chronic diseases | 2.01 | 1.43 |
HSC | Self-reported household social class measured on a 10 point scale (1 = lowest; 10 = highest) | 3.25 | 1.60 |
Model Predictors | Model 1 (Only Control Variables) | Model 2 (Internet Use + FNV) | Model 3 (NSES + NI) | |||
---|---|---|---|---|---|---|
Coeff. | t | Coeff. | t | Coeff. | t | |
Individual-level variables | ||||||
Age | −0.015 | −0.763 | −0.028 | −1.353 | −0.028 | −1.349 |
Gender (ref: female) | −1.012 *** | −4.685 | −1.105 *** | −5.085 | −1.165 *** | −5.266 |
Marital status (ref: nonmarried) | −0.657 † | −1.822 | −0.722 * | −2.010 | −0.781 * | −2.189 |
Year of education | −0.114 *** | −3.358 | −0.074 † | −1.795 | −0.036 | −0.836 |
Household income | −0.116 † | −1.750 | −0.098 | −1.471 | −0.075 | −1.124 |
House tenure Chronic diseases | −0.388 | −1.164 | −0.352 | −1.073 | −0.598 † | −1.682 |
0.900 *** | 11.016 | 0.897 *** | 11.258 | 0.903 *** | 11.471 | |
Hukou | −0.730 † | −1.843 | −0.690 † | −1.755 | −0.657 † | −1.677 |
Social class | −0.429 *** | −6.232 | −0.426 *** | −6.189 | −0.403 *** | −5.730 |
CCPM | −0.777 *** | −3.999 | −0.682 *** | −3.549 | −0.709 *** | −3.570 |
Internet use | −0.394 *** | −3.345 | −0.337 ** | −2.896 | ||
FVN | −0.071 * | −2.258 | −0.086 ** | −2.731 | ||
Constant | 1.421 *** | 0.034 | 1.418 *** | 0.034 | 1.418 *** | 0.034 |
Neighborhood-level variables | ||||||
NSES | −0.349 * | −2.424 | ||||
NI | 0.223 † | 1.737 | ||||
Random-effects Parameters | ||||||
Between-group variance | 1.108 | 0.425 | 1.027 | 0.394 | 0.850 | 0.342 |
Within-group variance | 17.136 | 1.172 | 17.030 | 1.162 | 17.034 | 1.172 |
ICC | 6.071% | 5.685% | 4.751% | |||
AIC | 11517 | 11504 | 11496 |
Model Predictors | Model 4 (Internet Use* NSES) | Model 5 (Internet Use* NI) | Model 6 (Internet Use* NSES & Internet Use * NI) | |||
---|---|---|---|---|---|---|
Coeff. | t | Coeff. | t | Coeff. | t | |
Individual-level variables | ||||||
Age | −0.026 | 0.021 | −0.028 | 0.021 | −0.026 | 0.021 |
Gender (ref: female) | −1.165 *** | 0.221 | −1.154 *** | 0.221 | −1.159 *** | 0.221 |
Marital status (ref: nonmarried) | −0.789 * | 0.354 | −0.777 * | 0.357 | −0.786 * | 0.355 |
Year of education | −0.027 | 0.043 | −0.036 | 0.043 | −0.027 | 0.043 |
Household income | −0.065 | 0.067 | −0.072 | 0.067 | −0.064 | 0.067 |
House tenure | −0.624 † | 0.358 | −0.613 † | 0.355 | −0.632 † | 0.358 |
Chronic diseases | 0.905 *** | 0.078 | 0.902 *** | 0.079 | 0.904 *** | 0.079 |
Hukou | −0.680 † | 0.393 | −0.662 † | 0.392 | −0.682 † | 0.393 |
Social class | −0.409 *** | 0.071 | −0.403 *** | 0.070 | −0.409 *** | 0.071 |
CCPM | −0.721 *** | 0.198 | −0.722 *** | 0.199 | −0.728 *** | 0.199 |
FVN | −0.086 ** | 0.031 | −0.084 ** | 0.032 | −0.085 ** | 0.032 |
Internet use | −0.399 ** | 0.124 | −0.373 ** | 0.117 | −0.417 *** | 0.122 |
Constant | 1.418 *** | 0.034 | 1.418 *** | 0.034 | 1.418 *** | 0.034 |
Neighborhood-level variables | ||||||
NSES | −0.398 ** | 0.149 | −0.334 * | 0.144 | −0.385 * | 0.151 |
NI | 0.177 | 0.129 | 0.202 † | 0.120 | 0.167 | 0.122 |
Cross-level variables | ||||||
Internet use×NSES | 0.206 * | 0.089 | 0.193 * | 0.093 | ||
Internet use×NI | −0.110 | 0.094 | −0.068 | 0.097 | ||
Random-effects Parameters | ||||||
Between-group variance | 0.802 | 0.825 | 0.340 | 0.791 | 0.329 | |
Within-group variance | 17.032 | 17.041 | 1.171 | 17.036 | 1.168 | |
ICC | 4.498% | 4.620% | 4.439% | |||
Aic | 11497 | 11499 | 11498 |
Model Predictors | Model 7 (Online News) | Model 8 (Online Health Information) | Model 9 (Social Networking) | Model 10 (Online Entertainment) | ||||
---|---|---|---|---|---|---|---|---|
Coeff. | t | Coeff. | t | Coeff. | t | Coeff. | t | |
Individual-level variables | ||||||||
Age | −0.020 | 0.021 | −0.021 | 0.020 | −0.023 | 0.021 | −0.028 | 0.020 |
Gender (0 = female) | −1.114 *** | 0.220 | −1.158 *** | 0.220 | −1.190 *** | 0.223 | −1.186 *** | 0.222 |
Marital status (0 = nonmarried) | −0.760 * | 0.354 | −0.759 * | 0.356 | −0.795 * | 0.356 | −0.799 * | 0.354 |
Year of education | −0.042 | 0.042 | −0.052 | 0.042 | −0.036 | 0.041 | −0.039 | 0.039 |
Household income | −0.069 | 0.067 | −0.075 | 0.068 | −0.072 | 0.066 | −0.070 | 0.066 |
House tenure | −0.638 † | 0.358 | −0.641 † | 0.361 | −0.638 † | 0.358 | −0.607 † | 0.354 |
Chronic diseases | 0.904 *** | 0.079 | 0.905 *** | 0.079 | 0.909 *** | 0.079 | 0.903 *** | 0.078 |
Hukou | −0.667 † | 0.392 | −0.652 † | 0.394 | −0.655 † | 0.392 | −0.702 † | 0.395 |
Social class | −0.407 *** | 0.070 | −0.407 *** | 0.071 | −0.404 *** | 0.070 | −0.405 *** | 0.070 |
CCPM | −0.746 *** | 0.199 | −0.735 *** | 0.200 | −0.741 *** | 0.196 | −0.727 *** | 0.199 |
FVN | −0.087 ** | 0.032 | −0.087 ** | 0.032 | −0.086 ** | 0.032 | −0.085 ** | 0.031 |
Online news | −0.165 * | 0.068 | ||||||
Online health news | −0.154 † | 0.081 | ||||||
SNS | −0.207 ** | 0.074 | ||||||
Online entertainment | −0.322 *** | 0.069 | ||||||
Constant | 1.418 *** | 0.034 | 1.419 *** | 0.034 | 1.418 *** | 0.034 | 1.415 *** | 0.034 |
Neighborhood-level variables | ||||||||
NI | 0.192 | 0.129 | 0.209 | 0.129 | 0.176 | 0.130 | 0.206 | 0.129 |
NSES | −0.421 ** | 0.147 | −0.402 ** | 0.149 | −0.416 ** | 0.147 | −0.359 * | 0.149 |
Cross-level variables | ||||||||
Online news*NSES | 0.139 ** | 0.051 | ||||||
Online health news*NSES | 0.091 | 0.066 | ||||||
SNS*NSES | 0.149 ** | 0.052 | ||||||
Online entertainment*NSES | 0.077 | 0.055 | ||||||
Random-effects parameters | ||||||||
Between-group variance | 0.809 | 0.331 | 0.829 | 0.339 | 0.823 | 0.336 | 0.860 | 0.340 |
Within-group variance | 17.061 | 1.168 | 17.084 | 1.173 | 17.037 | 1.170 | 16.958 | 1.166 |
ICC | 0.045 | 0.046 | 0.046 | 0.048 | ||||
AIC | 11500 | 11505 | 11499 | 11492 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, D.; Yuan, H. Neighborhood Environment, Internet Use and Mental Distress among Older Adults: The Case of Shanghai, China. Int. J. Environ. Res. Public Health 2021, 18, 3616. https://doi.org/10.3390/ijerph18073616
Ma D, Yuan H. Neighborhood Environment, Internet Use and Mental Distress among Older Adults: The Case of Shanghai, China. International Journal of Environmental Research and Public Health. 2021; 18(7):3616. https://doi.org/10.3390/ijerph18073616
Chicago/Turabian StyleMa, Dan, and Hao Yuan. 2021. "Neighborhood Environment, Internet Use and Mental Distress among Older Adults: The Case of Shanghai, China" International Journal of Environmental Research and Public Health 18, no. 7: 3616. https://doi.org/10.3390/ijerph18073616
APA StyleMa, D., & Yuan, H. (2021). Neighborhood Environment, Internet Use and Mental Distress among Older Adults: The Case of Shanghai, China. International Journal of Environmental Research and Public Health, 18(7), 3616. https://doi.org/10.3390/ijerph18073616