water-logo

Journal Browser

Journal Browser

Advancing Data-Driven Approaches in Landscape Hydrology: Innovations and Applications

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Urban Water Management".

Deadline for manuscript submissions: 25 November 2025 | Viewed by 628

Special Issue Editors

College of Design and Innovation, Tongji University, Shanghai 200093, China
Interests: urban planning; stormwater management; landscape architecture; generative algorithms; nature-based solutions

Special Issue Information

Dear Colleagues,

In the era of big data and artificial intelligence, data-driven approaches are revolutionizing landscape hydrology by enhancing our ability to analyze, model, and predict hydrological processes across diverse spatial and temporal scales. This Special Issue aims to showcase cutting-edge research that integrates advanced computational methods, remote sensing, machine learning, and hydrological modeling to address key challenges in water resources management, flood risk assessment, climate change adaptation, and sustainable landscape planning.

We welcome contributions that explore novel methodologies, interdisciplinary frameworks, and real-world applications in the following areas: 

  • Machine learning and AI applications in hydrological modeling;
  • Remote sensing and GIS-based hydrological analysis;
  • Hydroinformatics and big data analytics in water resource management;
  • Climate change impacts on landscape hydrology;
  • Nature-based solutions for flood and drought mitigation;
  • Coupled human-nature systems in hydrological research.

By bringing together innovative research and practical applications, this Special Issue aims to foster the development of more resilient and sustainable hydrological systems in the face of global environmental change.

Dr. Mo Wang
Dr. Rana Muhammad Adnan Ikram
Dr. Shiqi Zhou
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • data-driven hydrology
  • machine learning in hydrology
  • hydroinformatics
  • climate change adaptation
  • nature-based solutions
  • GIS-based hydrological modeling
  • flood and drought mitigation
  • sustainable water management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

30 pages, 4875 KiB  
Article
Assessing Groundwater Potential in the Kabul River Basin of Pakistan: A GIS and Analytical Hierarchy Process Approach for Sustainable Water Management
by Waqas Ul Hussan, Muhammad Irfan, Muhammad Waseem, Muhammad Yaseen, Wasim Karam, Muhammad Adnan, Rana Muhammad Adnan and Wang Mo
Water 2025, 17(11), 1584; https://doi.org/10.3390/w17111584 - 23 May 2025
Viewed by 511
Abstract
The rapid urbanization in the Kabul River Basin has increased the demand for water for both drinking and commercial purposes, leading to domestic and industrial water insecurity. Assessing the groundwater potential of the Kabul River Basin is highly crucial for effective water management. [...] Read more.
The rapid urbanization in the Kabul River Basin has increased the demand for water for both drinking and commercial purposes, leading to domestic and industrial water insecurity. Assessing the groundwater potential of the Kabul River Basin is highly crucial for effective water management. The aim of this paper is to identify potential zones for groundwater by employing a Geographic Information System and an Analytical Hierarchy Process approach to formulate a cumulative score based on seven thematic images—rainfall, geology, lineament density, drainage density, land use/land cover, soil type, and slope—within the Kabul River, with assigned weightages of 32%, 27%, 12%, 10%, 8%, 6%, and 5%, respectively, with a consistency ratio of 0.053 (5%), demonstrating the reliability of the results. The study shows that the first three factors contribute more to the percentages of Groundwater Potential Zones. The identified groundwater potential is classified into very good, good, medium, poor, and very poor zones, covering 35.45% (19,989 km2), 37.2% (20,978 km2), 23.16% (13,063 km2), 4.13% (2332 km2), and 0.06% (19 km2), respectively. Groundwater potential in the basin is predominantly classified as good to medium; however, there are notable variations across sub-basins. The Swat sub-basin and western parts of the Kabul River Basin, encompassing the Panjshir and Parwan districts, exhibit exceptionally high groundwater potential. In contrast, the Panjkora sub-basin (Dir district) and southwestern areas of the Kabul River Basin, covering parts of the Ghazni and Wardak districts, have very limited groundwater potential. Full article
Show Figures

Figure 1

Back to TopTop