water-logo

Journal Browser

Journal Browser

Harmonizing Urban Resilience: Exploring the Potential of Nature-Based Solutions in Mitigating Urban Flooding

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Water Resources Management, Policy and Governance".

Deadline for manuscript submissions: closed (25 October 2024) | Viewed by 5836

Special Issue Editors

Special Issue Information

Dear Colleagues,

Urban flood disasters caused by heavy rain or storm surges have resulted in severe losses of life and property worldwide, posing serious threats to social–economic development. Due to fast urbanization and global climate change, the magnitude, frequency, and intensity of urban flooding susceptibility is expected to continuously increase, and therefore, urban areas must increase their resilience and capacity to deal with urban floods. Nature-based solutions (NBS) are an effective way to mitigate urban flooding by using natural and artificial ecosystem services to achieve the Sustainable Development Goals, including ecosystem-based approaches such as ecosystem-based adaptation, ecosystem-based disaster risk mitigation, natural infrastructure, green infrastructure, and nature-based climate change solutions. Therefore, contributions to this Special Issue are expected to include the use of NBS to mitigate urban flooding and the evaluation of their performance.

Dr. Mo Wang
Dr. Rana Muhammad Adnan Ikram
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • urban flooding
  • nature-based solutions
  • green infrastructure
  • sustainable cities
  • ecosystem services

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2083 KiB  
Article
A Dynamic Game Model for Emergency Resource Managers and Compound Disasters Induced by Heavy Rainstorms
by Yi Wu, Xuezhi Tan, Haoyuan Mo, Xudong Li, Yin Zhang, Fang Yang, Lixiang Song, Yong He and Xiaohong Chen
Water 2024, 16(20), 2959; https://doi.org/10.3390/w16202959 - 17 Oct 2024
Viewed by 864
Abstract
Under the impact of global climate change and human activities, the occurrence of compound disasters such as cascading landslides and flash floods caused by heavy rainfall is increasing. In response to these compound disaster events, it is important to simultaneously transport emergency resources [...] Read more.
Under the impact of global climate change and human activities, the occurrence of compound disasters such as cascading landslides and flash floods caused by heavy rainfall is increasing. In response to these compound disaster events, it is important to simultaneously transport emergency resources from multiple emergency rescue points to the disaster sites to promptly control the cascading development of disasters and reduce the areas affected by the disasters and associated adverse impacts. This study proposes a dynamic game model for emergency resources dispatch to comprehensively consider the evolution of the compound disaster states and the timely dispatch of emergency resources from the rescue points to the disaster site. The dynamic game model is exemplarily applied to the emergency resource dispatch for a rainstorm-induced compound disaster that occurs in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Starting with the analysis of the characteristics of emergency resource management and the attributes of a cascading of heavy rainstorms, landslides, and flash floods, the game model simulates the dynamic game process between the “disaster state” and the “emergency resource manager” in the rescue operations. A two-stage dynamic game model can support decision-making with the objectives of minimal time cost and sufficient resource dispatch for the disaster sites. Game results show that the united emergency resource dispatch in the three GBA metropolitan areas can efficiently respond to compound disasters that occur within the GBA metropolitan area. The dynamic game model could be extended for compound disaster emergency responses with more complicated compound effects and resource constraints. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 35547 KiB  
Review
A Systematic Review of the Vertical Green System for Balancing Ecology and Urbanity
by Jiayu Zhao, Qiuyi Rao, Chuanhao Sun, Rana Muhammad Adnan Ikram, Chengliang Fan, Jianjun Li, Mo Wang and Dongqing Zhang
Water 2024, 16(11), 1472; https://doi.org/10.3390/w16111472 - 22 May 2024
Cited by 1 | Viewed by 4356
Abstract
Skyrise greenery, including green roofs and vertical gardens, has emerged as an indispensable tool for sustainable urban planning with multiple ecological and economic benefits. A bibliometric analysis was used to provide a systematic review of the functions associated with skyrise greenery in urban [...] Read more.
Skyrise greenery, including green roofs and vertical gardens, has emerged as an indispensable tool for sustainable urban planning with multiple ecological and economic benefits. A bibliometric analysis was used to provide a systematic review of the functions associated with skyrise greenery in urban landscapes. Key research tools, including the “Bibliometrix” R package and “CiteSpace” 6.2 R4, highlight the depth and breadth of the literature covering skyrise greenery. In 2000–2022, a total of 1474 original journal articles were retrieved. Over this period, there was an exponential increase in the number of publications, reflecting both enhanced knowledge and increasing concerns regarding climate change, the urban heat island, and urbanization. Of the total, ~58% of the articles originated from China, followed by the USA, Italy, Australia, and Canada. The research themes, such as urban heat islands, carbon sequestration, hydrology, and air quality, have been identified as the frontier in this fields. Furthermore, researchers from developed countries contributed the most publications to this domain, while developing countries, such as China, play an increasing role in the design and performance evaluation of vertical greenery. Key benefits identified in vertical green systems (e.g., green roofs and walls) include thermal regulation, sustainable water management, air-quality improvement, noise reduction, and biodiversity enhancement. In addition, several potential future research prospectives are highlighted. This review provides a comprehensive insight into exploring the pivotal role of skyrise greenery in shaping sustainable, resilient urban futures, coupled with sustainable urban planning. Full article
Show Figures

Figure 1

Back to TopTop