water-logo

Journal Browser

Journal Browser

Spatial Analysis of Flooding Phenomena: Challenges and Case Studies

A special issue of Water (ISSN 2073-4441). This special issue belongs to the section "Hydrology".

Deadline for manuscript submissions: 21 October 2025 | Viewed by 469

Special Issue Editor


E-Mail Website1 Website2 Website3
Guest Editor
Department of Mining & Civil Engineering, Technical University of Cartagena, Av. Alfonso XIII, 50, 30203 Cartagena, Spain
Interests: GIS; spatial planning; flooding analysis; hazard risks; urban informatics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Climate change and the accelerated urban development in recent decades have configured a complex panorama in many parts of the world. The urban growth of cities has been carried out on many occasions with its back turned to the problem of flooding, currently generating risk situations with very heterogeneous characteristics. The way in which the territory is transformed by humans and the meteorological effects derived from climate change form a dangerous cocktail that is often difficult to diagnose. This changing context has led academics and researchers in this field to develop increasingly complex and demanding frameworks of analysis. However, these actions must be carried out taking into account the increasingly multidisciplinary nature of the flooding phenomena, while highlighting the importance of spatial analysis for its study. This Special Issue seeks contributions involving innovative methodological approaches or relevant case studies regarding topics such as the following:

  • Climate change and its flooding derivatives;
  • New GIS frameworks for urban flooding analysis;
  • Strategies for mitigating flooding effects through land use policies and management;
  • Risk analysis derived from human anthropization of territory;
  • Regulatory spatial applications aimed at integrating different knowledge of flooding;
  • Correlation between unbalanced urban planning and flooding vulnerability;
  • Advances in DSM and DTM modeling of flooding in urban areas.

Innovative methodologies, frameworks, or significant results from relevant case studies related to all these topics are welcome, but similar ones may also be considered for publication if they fit within the scope of this Special Issue.

Dr. Salvador García-Ayllón
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • flooding derivatives
  • flooding analysis
  • flooding effects
  • flooding vulnerability
  • flood model

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

31 pages, 13223 KiB  
Article
An Integrated Approach for Groundwater Potential Prediction Using Multi-Criteria and Heuristic Methods
by Aslı Bozdağ, Zeynep Ünal, Ahmet Emin Karkınlı, Arjumand Bano Soomro, Mohammad Shuaib Mir and Yonis Gulzar
Water 2025, 17(8), 1212; https://doi.org/10.3390/w17081212 - 18 Apr 2025
Viewed by 114
Abstract
This research focuses on groundwater mapping for the Çumra and Beyşehir Basins in Konya, a semi-arid region in Turkey that plays a crucial role in agriculture and the food industry. Geographic information systems (GIS), the analytical hierarchical process (AHP), and the multi-population-based differential [...] Read more.
This research focuses on groundwater mapping for the Çumra and Beyşehir Basins in Konya, a semi-arid region in Turkey that plays a crucial role in agriculture and the food industry. Geographic information systems (GIS), the analytical hierarchical process (AHP), and the multi-population-based differential evolution algorithm (MDE) were combined to identify potential groundwater zones. Since direct data on groundwater presence are costly to obtain, thematic maps created from groundwater conditioning factors (such as aquifer, slope, permeability, alluvial soil, soil quality, lithology, precipitation, temperature, salinity, and stone density) can be used to estimate groundwater potential. In this study, these factors were assigned weights using the AHP technique in Model 1 and the MDE technique in Model 2. The TOPSIS (technique for order preference by similarity to ideal solution) method was then employed to simulate groundwater potential, using weights from both techniques. The performance metrics of both models were as follows: Model 1 (RMSE: 114.219, MSE: 13,046.091, and MAE: 99.663) and Model 2 (RMSE: 114.209, MSE: 13,043.785, and MAE: 99.652). The proposed method addresses issues of consistency and bias that might arise from relying on expert opinions through the use of heuristic techniques. Moreover, this approach, which does not require direct data on groundwater availability, enables the creation of accurate predictions while overcoming the challenges of obtaining expensive data in underdeveloped and developing countries. It provides a scientifically sound way to identify and conserve water resources, reducing drilling and other related costs in watershed management and planning. Full article
(This article belongs to the Special Issue Spatial Analysis of Flooding Phenomena: Challenges and Case Studies)
Show Figures

Figure 1

Back to TopTop