The Paradigm Shift in Scientific Interest on Flood Risk: From Hydraulic Analysis to Integrated Land Use Planning Approaches
Abstract
1. Introduction
2. Methodological Approach for Analysis
3. Retrospective Analysis
- -
- In the red cluster, flood control, water management, urban runoff, drainage network, watersheds, storm water, and hydrology.
- -
- In the green cluster, land use, risk assessment, flood risk management, flood damage, vulnerability, hazards, and mapping.
- -
- In the blue cluster, climate change, flooding, sustainability, economic and social effects, resilience, adaptation, green infrastructure, cities, and urban design.
4. Discussion of Current Situation
5. Conclusions and Future Lines of Research
5.1. Main Findings
- (1)
- The bibliometric meta-analysis carried out highlights a surge in academic research since 2010 approximately (this date is not an exact point of change in inertia but rather the approximate beginning of the current phase of sustained growth), with co-occurrence clustered search results showing a diversification of publication sources, which reflects a much broader, interdisciplinary understanding of flood risk. Research today emphasizes integrated, adaptive planning strategies that account for the dynamic relationship between urban growth phenomena and flood vulnerability.
- (2)
- Three main thematic clusters have emerged—hydrological control, urban development, and climate-related adaptation—with an increasing focus on sustainability, resilience, and nature-based solutions. These topics demonstrate a shift away from reactive flood mitigation toward proactive risk reduction embedded within urban planning frameworks. Advanced technological tools, including GISs, remote sensing, and urban design based on hydrological modeling, are now essential in urban flood risk analysis. These technologies enhance decision-making, improve hazard mapping, and enable more accurate scenario simulations, thus supporting better-informed planning practices.
- (3)
- Case studies from around the world illustrate the current global relevance of this issue. Many show that poorly planned or unregulated urban expansion significantly increases flood risk, particularly in vulnerable and rapidly urbanizing regions. In contrast, well-implemented planning policies can greatly reduce exposure and damage, even in areas of high vulnerability. The integration of flood risk assessment into city planning processes is increasingly viewed not only as an environmental necessity but as a social and economic imperative. In particular, storm flooding in urban areas has emerged as the most critical concern due to its increasing frequency and unpredictability because of climate change derivatives.
5.2. Future Lines of Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- CRED—UNDRR. The Human Cost of Disasters. An Overview of the Last 20 Years (2000–2019); Centre for Research on the Epidemiology of Disasters & UN Office for Disaster Risk Reduction: Geneva, Switzerland, 2020; p. 28. [Google Scholar]
- Dabrowska, J.; Menéndez, A.E.; Kiliian, W.; Moryl, A.; Cielecka, N.; Michalowska, K.; Policht-Latawiec, A.; Michalski, A.; Bednarek, A.; Wlóka, A. Between flood and drought: How cities are facing water surplus and scarcity. J. Environ. Manag. 2023, 345, 118557. [Google Scholar] [CrossRef]
- Li, C.; Sun, N.; Lu, Y.; Guo, B.; Wang, Y.; Sun, X.; Yao, Y. Review on urban flood risk assessment. Sustainability 2023, 15, 765. [Google Scholar] [CrossRef]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. The Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 29 August 2023).
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- IPCC. Managing the Risk of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; p. 582. [Google Scholar]
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015; Available online: https://www.unisdr.org/we/inform/publications/43291 (accessed on 14 October 2024).
- UN. United Nation Population Division World Urbanization Prospects; United Nations: New York, NY, USA, 2024; Available online: https://population.un.org/wup/ (accessed on 20 June 2024).
- UN. World Urbanization Prospects; United Nations Department of Economics and Social Affairs: New York, NY, USA, 2023; Available online: https://population.un.org/wup/ (accessed on 15 May 2023).
- UNDRR. Annual Report 2024; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2025; p. 34. [Google Scholar]
- Yang, Y.; Lv, Y.; Zhou, D. The Impact of Urban Parks on the Thermal Environment of Built-up Areas and an Optimization Method. PLoS ONE 2025, 20, e0318633. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.-L.; Min, Y.-T.; Chen, S.; Yang, W.; Gu, J.-T.; Feng, W.-J.; Li, Y.; Hong, C.; Du, J.; et al. Fukushima Contaminated Water Risk Factor: Global Implications. Environ. Sci. Technol. 2025, 59, 3703–3712. [Google Scholar] [CrossRef]
- Yu, B.; Hu, Y.; Zhou, X. Can Administrative Division Adjustment Improve Urban Land Use Efficiency? Evidence from “Revoke County to Urban District” in China. Environ. Plan. B 2025, 23998083251325638. [Google Scholar] [CrossRef]
- García-Ayllón, S.; Radke, J. Geostatistical analysis of the spatial correlation between territorial anthropization and flooding vulnerability: Application to the DANA phenomenon in a Mediterranean watershed. Appl. Sci. 2021, 11, 809. [Google Scholar] [CrossRef]
- Blum, A.G.; Ferraro, P.J.; Archfield, S.A.; Ryberg, K.R. Casual effect of impervious cover on annual flood magnitude for the United States. Geophys. Res. Lett. 2020, 47, e2019GL086480. [Google Scholar] [CrossRef]
- Kaspersen, P.S. Impacts of Urban Development and Climate Change in Exposing Cities to Pluvial Flooding. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 2016. [Google Scholar]
- Piyumi, M.M.M.; Abenayake, C.; Jayasinghe, A.; Wijegunarathna, E. Urban flood modeling application: Assess the effectiveness of building regulation in coping with urban flooding under precipitation uncertainty. Sustain. Cities Soc. 2021, 75, 103294. [Google Scholar] [CrossRef]
- Villarreal-Rosas, J.; Wells, J.A.; Sonter, L.J.; Possingham, H.P.; Rhodes, J.R. The impacts of land use change on flood protection among multiple beneficiaries. Sci. Total Environ. 2022, 806, 150577. [Google Scholar] [CrossRef]
- Oda, P.S.S.; Teixeira, D.L.S.; Pinto, T.A.C.; da Silva, F.P.; Riondet-Costa, D.R.T.; Mattos, E.; dos Santos, A.P.P. Disasters in Petrópolis, Brazil: Political, urban planning, and geometeorological factors that contributed to the event on February 15, 2022. Urban Clim. 2024, 54, 101849. [Google Scholar] [CrossRef]
- Ahmad, S.; Peng, X.; Ashraf, A.; Yin, D.; Chen, Z.; Ahmed, R.; Israr, M.; Jia, H. Building resilient urban drainage systems by integrated flood risk index for evidence-based planning. J. Environ. Manag. 2025, 374, 124130. [Google Scholar] [CrossRef]
- Todeschini, S.; Papiri, S.; Ciaponi, C. Placement strategies and cumulative effects of wet-weather control practices for intermunicipal sewerage systems. Water Resour. Manag. 2018, 32, 2885–2900. [Google Scholar] [CrossRef]
- de Oliveira, O.J.; da Silva, F.F.; Juliani, F.; Motta Barbosa, L.C.F.; Vieira Nunhes, T. Bibliometric method for mapping the state-of-the-art and identifying research gaps and trends in literature: An essential instrument to support the development of scientific projects. In Scientometrics Recent Advances; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Boulanger, S.O.M. Urban adaptation to climate change state of the art: Evaluating the role of adaptation assessment frameworks through a systematic and bibliometric analysis. Sustainability 2023, 15, 10134. [Google Scholar] [CrossRef]
- European Union. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. Available online: https://eur-lex.europa.eu/eli/dir/2007/60/oj/eng (accessed on 10 May 2025).
- Demuzere, M.; Orru, K.; Heidrich, O.; Olozabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.D.; Hutchins, M. The impacts of urbanization and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef]
- Breen, M.J.; Kebede, A.S.; König, C.S. The safe development paradox in flood risk management: A critical review. Sustainability 2022, 14, 16955. [Google Scholar] [CrossRef]
- Oneto, G.; Canepa, M. Addressing sustainable urban flood risk: Reviewing the role and scope of theoretical models and policies. Water Policy 2023, 25, 797–813. [Google Scholar] [CrossRef]
- Kawamura, A.; Amaguchi, H.; Olsson, J.; Tanouchi, H. Urban flood runoff modeling in Japan: Recent developments and future prospects. Water 2023, 15, 2733. [Google Scholar] [CrossRef]
- Mabrouk, M.; Han, H.Y.; Mahran, M.G.N.; Abdrabo, K.I.; Yousry, A. Revisiting urban resilience: A systematic review of multiple-scale urban form indicators in flood resilience assessment. Sustainability 2024, 16, 5076. [Google Scholar] [CrossRef]
- Rözer, V.; Mehryar, S.; Surminski, S. From managing risk to increasing resilience: A review on the development of urban flood resilience, its assessment and the implication for decision making. Environ. Res. Lett. 2022, 17, 123006. [Google Scholar] [CrossRef]
- Khodadad, M.; Aguilar-Barajas, I.; Khan, A.Z. Green infrastructure for urban flood resilience: A review of recent literature on bibliometrics, methodologies, and typologies. Water 2023, 15, 523. [Google Scholar] [CrossRef]
- Azadgar, A.; Nyka, L.; Salata, S. Advancing urban flood resilience: A systematic review of urban flood risk mitigation model, research trends, and future directions. Land 2024, 13, 2138. [Google Scholar] [CrossRef]
- Skrydstrup, J.; Löwe, R.; Gregersen, I.B.; Koetse, M.; Aerts, J.C.J.H.; de Ruiter, M.; Arnbjerg-Nielsen, K. Assessing the recreational value of small-scale nature-based solutions when planning urban flood adaptation. J. Environ. Manag. 2022, 320, 115724. [Google Scholar] [CrossRef]
- Enu, K.B.; Zingraff-Hamed, A.; Rahman, M.A.; Stringer, L.C.; Pauleit, S. Review article: Potential of nature-based solutions to mitigate hydro-meteorological risks in sub-Saharan Africa. Nat. Hazards Earth Syst. Sci. 2023, 23, 481–505. [Google Scholar] [CrossRef]
- Han, J.; Wang, C.; Deng, S.; Lichtfouse, E. China’s sponge cities alleviate urban flooding and water shortage: A review. Environ. Chem. Lett. 2023, 21, 1297–1314. [Google Scholar] [CrossRef]
- Herath, H.M.M.S.D.; Fujino, T.; Senavirathna, M.D.H.J. A review of emerging scientific discussions on green infrastructure (GI)-prospects towards effective use of urban flood plains. Sustainability 2023, 15, 1227. [Google Scholar] [CrossRef]
- Jandaghian, Z.; Zhu, Y.; Saragosa, J.; Doshi, H.; Baskaran, B. Low-sloped rooftop storm-water detention assembly to mitigate urban flooding. Buildings 2023, 13, 8. [Google Scholar] [CrossRef]
- Xu, H.; Randall, M.; Fryd, O. Urban stormwater management at the meso-level: A review of trends, challenges and approaches. J. Environ. Manag. 2023, 331, 117255. [Google Scholar] [CrossRef]
- Xu, J.; Dai, J.; Wu, X.; Wu, S.; Zhang, Y.; Wang, F.; Gao, A.; Tan, Y. Urban rainwater utilization: A review of management modes and harvesting systems. Front. Environ. Sci. 2023, 11, 1025665. [Google Scholar] [CrossRef]
- Ferrario, F.; Mourato, J.M.; Rodrigues, M.S.; Dias, L.F. Evaluating Nature-based Solutions as urban resilience and climate adaptation tools: A meta-analysis of their benefits on heatwaves and floods. Sci. Total Environ. 2024, 950, 175179. [Google Scholar] [CrossRef]
- Kisvarga, S.; Horotán, K.; Wani, M.A.; Orlóci, L. Plant responses to global climate change and urbanization: Implications for sustainable urban landscapes. Horticulturae 2023, 9, 1051. [Google Scholar] [CrossRef]
- Pizzorni, M.; Innocenti, A.; Tollin, N. Droughts and floods in a changing climate and implications for multi-hazard urban planning: A review. City Environ. Interact. 2024, 24, 100169. [Google Scholar] [CrossRef]
- Dharmarathne, G.; Waduge, A.O.; Bogahawaththa, M.; Rathnayake, U.; Meddage, D.P.P. Adapting cities to the surge: A comprehensive review of climate-induced urban flooding. Results Eng. 2024, 22, 102123. [Google Scholar] [CrossRef]
- Doeffinger, T.; Rubinyi, S. Secondary benefits of urban flood protection. J. Environ. Manag. 2023, 326, 116617. [Google Scholar] [CrossRef] [PubMed]
- Bigelow, G.H. The flood in Massachusetts. Am. J. Public Health 1927, 17, 1248–1249. [Google Scholar] [CrossRef]
- McClean, W.N. River gauging and flood prevention. Nature 1932, 130, 62. [Google Scholar] [CrossRef]
- Davenport, R.W. The Ohio-Mississippi floods of 1937. Nature 1937, 140, 666–669. [Google Scholar] [CrossRef]
- White, G.F. Human Adjustment to Floods: A Geographical Approach to the Flood Problem in the United States; University of Chicago: Chicago, IL, USA, 1945; p. 237. [Google Scholar]
- White, G.F. Strategic aspects of urban flood-plain occupance. J. Hydraul. Div. 1960, 86, 89–102. [Google Scholar] [CrossRef]
- Burby, R.J.; French, S.P. Coping with floods: The land use management paradox. J. Am. Plann. Assoc. 1981, 47, 289–300. [Google Scholar] [CrossRef]
- Ravensdale, J.R. Liable to Floods Village Landscape on the Edge of the Fens A D 450–1850; Homerton College: Cambridge, UK, 1974. [Google Scholar]
- James, J.D. Using a digital computer to estimate the effects of urban development on flood peaks. Water Resour. Res. 1965, 1, 2223–2234. [Google Scholar] [CrossRef]
- Anderson, D.G. Effects of Urban Development on Floods in Northern Virginia; Water-Supply Paper 2002-C; U.S. Geological Survey: Reston, VA, USA, 1968; p. 22.
- Siler, R.W. Flood problems and their solution through urban planning programs. Land Econ. 1956, 32, 194–196. [Google Scholar] [CrossRef]
- Leopold, L.B. Hydrology for urban land planning: A Guidebook of the Hydrologic Effects of Urban Land Use; Circular 554; U.S. Geological Survey: Reston, VA, USA, 1968; p. 18. [CrossRef]
- Parker, D.J. Floods, Vols. I and II; Routledge: London, UK, 2000; p. 808. [Google Scholar]
- Burby, R.J. Land-use planning for flood hazard reduction. In Floods; Parker, D.J., Ed.; Routledge: London, UK, 2000; Volume II, pp. 6–18. [Google Scholar]
- Kang, S.J.; Lee, S.J.; Lee, K.H. A study on the implementation of non-structural measures to reduce urban flood damage-focused on the survey results of the experts. J. Asian Archit. Build. Eng. 2009, 8, 385–392. [Google Scholar] [CrossRef]
- Jia, M.Y.; Wu, S.T. Strategy study on urban disaster prevention and evacuation space planning. In Proceedings of the 3rd International Disaster and Risk Conference, Davos, Switzerland, 18 August 2010; Volume 1, pp. 388–392. [Google Scholar]
- Morelli, S.; Segoni, S.; Manzo, G.; Ermini, L.; Catani, F. Urban planning, flood risk and public policy: The case of the Arno River, Firenze, Italy. Appl. Geogr. 2012, 34, 205–218. [Google Scholar] [CrossRef]
- Lu, X.X.; Ran, L.S. China flood havoc highlights poor urban planning. Nat. Hazards 2011, 56, 575–576. [Google Scholar] [CrossRef]
- Pérez-Morales, A. Assessment procedures and their application in the general plans of municipal management as tools for flood risk mitigation. The case of the southern municipalities of the Region of Murcia. Scr. Nova 2011, 15, 1–12. [Google Scholar]
- Chanthamas, Y.; Anantasuksomsri, S.; Tontisirin, N. Review of urban flood impact reduction due to climate change adaption driven by urban planning management in Pathumthani province, Thailand. Int. Rev. Spat. Plan. Sustain. Dev. 2017, 5, 43–53. [Google Scholar] [CrossRef]
- Benítez, G.; Pérez-Vázquez, A.; Nava-Tablada, M.; Equihua, M.; Álvarez-Palacios, J.L. Urban expansion and the environmental effects of informal settlements on the outskirts of Xalapa city, Veracruz, Mexico. Environ. Urban. 2012, 24, 149–166. [Google Scholar] [CrossRef]
- Young, A.F. Urban expansion and environmental risk in the São Paulo Metropolitan Area. Clim. Res. 2013, 57, 73–80. [Google Scholar] [CrossRef]
- Hellman, J. Living with floods and coping with vulnerability. Disaster Prev. Manag. 2015, 24, 468–483. [Google Scholar] [CrossRef]
- Dhar, T.K.; Khirfan, L. Climate change adaptation in the urban planning and design research: Missing links and research agenda. J. Environ. Plan. Manag. 2017, 60, 602–627. [Google Scholar] [CrossRef]
- Rahaman, K.R. Comparing Municipal Climate Adaptation Planning Processes in the EU and Canada. Master’s Thesis, Wilfrid Laurier University, Waterloo, ON, Canada, 2012; p. 161. [Google Scholar]
- Wei, Y.Q.; Fang, Y.P. Impacts and adaptation of climate change on urban economic system: A perspective from the urban planning. Appl. Mech. Mater. 2012, 174–177, 2270–2277. [Google Scholar] [CrossRef]
- Khailani, D.K.; Perera, R. Mainstreaming disaster resilience attributes in local development plans for the adaptation to climate change induced flooding: A study based on the local plan of Shah Alam City, Malaysia. Land Use Policy 2013, 30, 615–627. [Google Scholar] [CrossRef]
- Yang, J.H.; Liu, B.; Liu, Z.G. Innovation of urban planning system and urban stormwater flood prevention. Adv. Mater. Res. 2012, 374–377, 2421–2425. [Google Scholar] [CrossRef]
- Larsen, C.; McGuinness, S. Climate change adaptation planning with peri-urban local government in Victoria, Australia. In Balanced Urban Development: Options and Strategies for Liveable Cities; Maheshwari, B., Thoradeniya, B., Singh, V.P., Eds.; Water Science and Technology Library; Springer: Cham, Switzerland, 2016; Volume 72, pp. 395–407. [Google Scholar] [CrossRef]
- Uittenbroek, C.J.; Janssen-Jansen, L.B.; Runhaar, H.A.C. Mainstreaming climate adaptation into urban planning: Overcoming barriers, seizing opportunities and evaluating the results in two Dutch case studies. Reg. Environ. Chang. 2013, 13, 399–411. [Google Scholar] [CrossRef]
- Tennekes, J.; Driessen, P.P.J.; van Rijswick, H.F.M.W.; van Bree, L. Out of the comfort zone: Institutional context and the scope for legitimate climate adaptation policy. J. Environ. Policy Plan. 2014, 16, 241–259. [Google Scholar] [CrossRef]
- Hetz, K.; Bruns, A. Urban planning lock-in: Implications for the realization of adaptive options towards climate change risks. Water Int. 2014, 39, 884–900. [Google Scholar] [CrossRef]
- Sciulli, N.; D’Onza, G.; Greco, G. Building a resilient local council: Evidence from flood disasters in Italy. Int. J. Public Sect. Manag. 2015, 28, 430–448. [Google Scholar] [CrossRef]
- Porta-Sancho, J.R.; Castillo-Rodríguez, J.T.; Escuder-Bueno, I.; Perales-Momparler, S. The need for municipal action planning against flood risk: The risk-informed journey of the municipality of Oliva (Spain). VITRUVIO—Int. J. Archit. Technol. Sustain. 2016, 1, 67–78. [Google Scholar] [CrossRef]
- APFM (Associated Programme on Flood Management). Urban Flood Risk Management: A Tool for Integrated Flood Management; World Meteorological Organization: Geneva, Switzerland, 2008; p. 38. [Google Scholar]
- Idris, R.; Latif, Z.A.; Hamid, J.R.A.; Jaafar, J.; Ahmad, M.Y. Integrating airborne LiDAR dataset and photographic images towards the construction of 3D building model. In Proceedings of the 8th International Symposium of the Digital Earth, Kuching, Sarawak, Malaysia, 26–29 August 2013; Volume 18, p. 012049. [Google Scholar] [CrossRef]
- García-Ayllón, S.; Martínez-Marí, G. New analysis and diagnostic tools for improving governance in urban planning and land management. Int. J. Sustain. Dev. Plan. 2015, 10, 137–154. [Google Scholar] [CrossRef]
- Liu, C.L.; Li, Y. GIS-based dynamic modelling and analysis of flash floods considering land-use planning. Int. J. Geogr. Inf. Sci. 2017, 31, 481–498. [Google Scholar] [CrossRef]
- Hamdy, O.; Zhao, A.; Salheen, M.A.; Eid, Y.Y. Identifying the risk areas and urban growth by ArcGIS-tools. Geosciences 2016, 6, 47. [Google Scholar] [CrossRef]
- Pang, C.; Yin, Q. The study on urban planning based on 3D city model. Appl. Mech. Mater. 2012, 174–177, 2490–2493. [Google Scholar] [CrossRef]
- Hron, V.; Kostin, V.; Halounová, L. Comparison of software solutions for automatic generation of 3D building models. In Proceedings of the 14th International Multidisciplinary Scientific Geoconference on Informatics, Geoinformatics and Remote Sensing, Sofia, Bulgaria, 17–26 June 2014; Volume I, pp. 513–520. [Google Scholar]
- Schröter, K.; Lüdtke, S.; Redweik, R.; Meier, J.; Bochow, M.; Ross, L.; Nagel, C.; Kreibich, H. Flood loss estimation using 3D city models and remote sensing data. Environ. Model. Softw. 2018, 105, 118–131. [Google Scholar] [CrossRef]
- Cano, V.H. Aplicación de los sig para la generación de rutas de evacuación en caso de desastres, como ayuda para la planificación urbana: “caso costa oriental del lago de Maracaibo”. Rev. Fac. Ing. Univ. Cent. Venez. 2011, 26, 17–26. [Google Scholar]
- Yilmaz, M.; Uysal, M. A comparative study of curvature and grid data reduction algorithms for LIDAR-derived digital terrain models. In Proceedings of the 6th International Conference on Cartography and GIS, Albena, Bulgaria, 13–17 June 2016; Volume 1–2, pp. 598–605. [Google Scholar]
- Ramyar, R.; Zarghami, E. Green infrastructure contribution for climate change adaptation in urban landscape context. Appl. Ecol. Environ. Res. 2017, 15, 1193–1209. [Google Scholar] [CrossRef]
- Boogaard, F.; Vojinovic, Z.; Chen, Y.C.; Kluck, J.; Lin, T.P. High resolution decision maps for urban planning: A combined analysis of urban flooding and thermal stress potential in Asia and Europe. MATEC Web Conf. 2016, 103, 04012. [Google Scholar] [CrossRef]
- De Pinho, C.M.; Fonseca, L.M.; Korting, T.S.; De Almeida, C.M.; Kux, H.J. Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis. Int. J. Remote Sens. 2012, 33, 5973–5995. [Google Scholar] [CrossRef]
- Patel, D.P.; Srivastava, P.K. Flood hazards mitigation analysis using remote sensing and GIS: Correspondence with town planning scheme. Water Resour. Manag. 2013, 27, 2353–2368. [Google Scholar] [CrossRef]
- Zhang, H.B.; Liang, Q.H.; Smith, L.; Kilsby, C. A Coupled Hydrological and Hydraulic Modeling System for Urban Flood Simulations. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013; pp. 4458–4464. [Google Scholar]
- Manzoor, S.; Ahanger, M.A. Probabilistic flood risk assessment using coupled hydrologic and 2D-hydraulic model in the Jhelum River, Northwest Himalayas. Int. J. Hydrol. Sci. Technol. 2024, 17, 46–74. [Google Scholar] [CrossRef]
- Lee, Y.; Brody, S.D. Examining the impact of land use on flood losses in Seoul, Korea. Land Use Policy 2018, 70, 500–509. [Google Scholar] [CrossRef]
- Sinha, R.K.; Eldho, T.I. Effect of historical and projected land use/cover change on runoff and sediment yield in the Netravati river basin, Western Ghats, India. Environ. Earth Sci. 2018, 77, 111. [Google Scholar] [CrossRef]
- Du, S.; Shi, P.; Van Rompaey, A.; Wen, J. Quantifying the impact of impervious surface location on flood peak discharge in urban areas. Nat. Hazards 2015, 76, 1457–1471. [Google Scholar] [CrossRef]
- Ning, J.; Gao, Z.; Lu, Q. Runoff simulation using a modified SWAT model with spatially continuous HRUs. Environ. Earth Sci. 2015, 74, 5895–5905. [Google Scholar] [CrossRef]
- Rathore, M.; Paul, A.; Ahmad, A. IoT and big data: Application for urban planning and building smart cities. In Managing the Internet of Things; Rathore, M., Paul, A., Ahmad, A., Eds.; Springer: Singapore, 2016; pp. 155–183. [Google Scholar] [CrossRef]
- Gaisie, E.; Cobbinah, P.B. Planning for context-based climate adaptation: Flood management inquiry in Accra. Environ. Sci. Policy 2023, 141, 97–108. [Google Scholar] [CrossRef]
- Yunus, S. Delineation of urban flood risk areas using geospatial technique. FUDMA J. Sci. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- da Costa, T.A.G.; Meneguette, R.I.; Ueyama, J. providing a greater precision of situational awareness of urban floods through multimodal fusion. Expert Syst. Appl. 2022, 188, 115923. [Google Scholar] [CrossRef]
- Oliveira, A.K.B.; Alves, L.M.C.; Carvalho, C.L.; Haddad, A.N.; Magalhaes, P.C.; Miguez, M.G. A framework for assessing flood risk responses of a densely urbanized watershed, to support urban planning decisions. Sustain. Resil. Infrastruct. 2023, 8, 400–418. [Google Scholar] [CrossRef]
- Sandink, D.; Binns, A.D. Reducing urban flood risk through building- and lot-scale flood mitigation approaches: Challenges and opportunities. Front. Water 2021, 3, 689202. [Google Scholar] [CrossRef]
- Malecha, M.L.; Woodruff, S.C.; Berke, P.R. Planning to exacerbate flooding: Evaluating a Houston, Texas, network of plans in place during Hurricane Harvey using a plan integration for resilience scorecard. Nat. Hazards Rev. 2021, 22, 04021030. [Google Scholar] [CrossRef]
- Pawley, A.; Moldoff, D.; Brown, J.; Freed, S. Reducing flood risk and improving system resiliency in Sacramento, California: Overcoming obstacles and emerging solutions. Front. Water 2023, 5, 1188321. [Google Scholar] [CrossRef]
- Kelly, M.; Schwarz, I.; Ziegelaar, M.; Watkins, A.B.; Kuleshov, Y. Flood risk assessment and mapping: A case study from Australia’s Hawkesbury-Nepean catchment. Hydrology 2023, 10, 26. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Qi, Z.; Cui, C. Flood sensitivity assessment of super cities. Sci. Rep. 2023, 13, 5582. [Google Scholar] [CrossRef]
- Li, Y.; Gao, J.; Yin, J.; Liu, L.; Zhang, C.; Wu, S. Flood risk assessment of areas under urbanization in Chongqing, China, by integrating multi-models. Remote Sens. 2024, 16, 219. [Google Scholar] [CrossRef]
- Kadaverugu, A.; Kadaverugu, R.; Chintala, N.R.; Gorthi, K.V. Flood vulnerability assessment of urban micro-watersheds using multi-criteria decision making and InVEST model: A case of Hyderabad City, India. Model. Earth Syst. Environ. 2022, 8, 3447–3459. [Google Scholar] [CrossRef]
- Yadav, N.; Wu, J.; Banerjee, A.; Pathak, S.; Garg, R.D.; Yao, S. Climate uncertainty and vulnerability of urban flooding associated with regional risk using multi-criteria analysis in Mumbai, India. Environ. Res. 2024, 244, 117962. [Google Scholar] [CrossRef]
- Masoumi, Z. Flood susceptibility assessment for ungauged sites in urban areas using spatial modelling. J. Flood Risk Manag. 2021, 14, e12767. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Choubin, B.; Mosavi, A.H.; Clague, J.J. Evaluating urban flood risk using hybrid methods of TOPSIS and machine learning. Int. J. Disaster Risk Reduct. 2021, 88, 102614. [Google Scholar] [CrossRef]
- Mustafa, A.; Szydfowski, M.; Veysipanah, M.; Hameed, H.M. GIS-based hydrodynamic modelling for urban flood mitigation in fast-growing regions: A case study of Erbil, Kurdistan Region of Iraq. Sci. Rep. 2023, 13, 8935. [Google Scholar] [CrossRef]
- Kato, H. Review: The trend in measures against urban inundation in Japan. J. Disaster Res. 2021, 16, 415–420. [Google Scholar] [CrossRef]
- Park, K.; Lee, M.H. The development and application of the urban flood risk assessment model for reflecting upon urban planning elements. Water 2019, 11, 920. [Google Scholar] [CrossRef]
- Romali, N.S.; Yusop, Z. Flood damage and risk assessment for urban area in Malaysia. Hydrol. Res. 2021, 52, 142–159. [Google Scholar] [CrossRef]
- Kalbani, K.A.; Rahman, A.A. 3D city model for monitoring flash flood risks in Salalah, Oman. Int. J. Eng. Geosci. 2022, 7, 17–23. [Google Scholar] [CrossRef]
- Serre, D.; Barroca, B.; Diab, Y. Urban flood mitigation: Sustainable options. WIT Trans. Ecol. Environ. 2010, 129, 299–309. [Google Scholar] [CrossRef]
- Peng, L.; Wang, Y.; Yang, L.; Garschagen, M.; Deng, X. A comparative analysis on flood risk assessment and management performances between Beijing and Munich. Environ. Impact Assess. Rev. 2024, 104, 107319. [Google Scholar] [CrossRef]
- Dai, L.; Wörner, R.; van Rijswick, H.F.M.W. Rainproof cities in the Netherlands: Approaches in Dutch water governance to climate-adaptive urban planning. Int. J. Water Resour. Dev. 2018, 34, 652–674. [Google Scholar] [CrossRef]
- Porębska, A.; Muszynski, K.; Godyn, I.; Racoń-Leja, K. City and water risk: Accumulated runoff mapping analysis as a tool for sustainable land use planning. Land 2023, 12, 1345. [Google Scholar] [CrossRef]
- Pérez-Morales, A.; Romero-Díaz, A.; Illán-Fernandez, E. Rainfall, anthropogenic soil sealing, and floods. An example from southeastern Spain. In Precipitation. Earth Surface Responses and Processes; Comino, J.R., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; pp. 499–520. [Google Scholar]
- Olcina, J.; Vera, J.F. Políticas públicas de planificación territorial en la Comunidad Valenciana. Luces y sombras. Cuad. Geogr. 2023, 110, 129–158. [Google Scholar]
- O’Donnell, E.C.; Thorne, C.R. Drivers of future urban flood risk. Philos. Trans. R. Soc. A 2020, 378, 20190216. [Google Scholar] [CrossRef]
- Pietrapertosa, F.; Olazabal, M.; Simoes, S.G.; Salvia, M.; Fokaides, P.A.; Ioannou, B.I.; Viguié, V.; Spyridaki, N.A.; Hurtado, S.D.G.; Geneletti, D.; et al. Adaptation to climate change in cities of Mediterranean Europe. Cities 2023, 140, 104452. [Google Scholar] [CrossRef]
- Hemmati, M.; Kornhuber, K.; Kruczkiewicz, A. Enhanced urban adaptation efforts needed to counter rising extreme rainfall risks. npj Urban Sustain. 2022, 2, 16. [Google Scholar] [CrossRef]
- Zornoza-Gallego, C.; Camarasa, A.; Pitarch, M.D.; Serrano, J. Vulnerabilidad del suelo residencial en la costa de la Comunidad Valenciana frente al cambio climático: Exposición a las inundaciones marinas. Cuad. Geogr. 2023, 110, 49–74. [Google Scholar] [CrossRef]
- Prigiobbe, V.; Dawson, C.; Hu, Y.; Sharif, H.O.; Tahvildari, N. Editorial: Coastal flooding: Modeling, monitoring, and protection systems. Front. Clim. 2022, 3, 830946. [Google Scholar] [CrossRef]
- Schanze, J. Pluvial flood risk management: An evolving and specific field. J. Flood Risk Manag. 2018, 11, 227–229. [Google Scholar] [CrossRef]
- Bernardini, G.; Ferreira, T.M.; Julià, P.B.; Eudave, R.R.; Quagliarini, E. Assessing the spatiotemporal impact of users’ exposure and vulnerability to flood risk in urban built environments. Sustain Cities Soc. 2024, 100, 105043. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Ping, L.; Li, N.; Zhao, P. Comprehensive zoning strategies for flood disasters in China. Water 2024, 16, 2546. [Google Scholar] [CrossRef]
- Fan, J.; Huang, G. Evaluation of flood risk management in Japan through a recent case. Sustainability 2020, 12, 5357. [Google Scholar] [CrossRef]
- Ashraf, S.; Luqman, M.; Iftikhar, M.; Ashraf, I.; Hassan, Z.Y. Understanding flood risk management in Asia: Concepts and challenges. In Flood Risk Management; Hromadka, T., Rao, P., Eds.; InTech: London, UK, 2017. [Google Scholar]
- Mehryar, S.; Surminski, S. National laws for enhancing flood resilience in the context of climate change: Potential and shortcomings. Clim. Policy 2021, 21, 133–151. [Google Scholar] [CrossRef]
- Qiang, Y.; Lam, N.S.N.; Cai, H.; Zou, L. Changes in exposure to flood hazards in the United States. Ann. Am. Assoc. Geogr. 2017, 107, 1332–1350. [Google Scholar] [CrossRef]
- Muñoz-Duque, L.A.; Navarro, O.; Restrepo-Ochoa, D.; Fleury-Bahi, G. Risk perception and trust management in inhabitants exposed to coastal flooding: The case of Cartagena, Colombia. Int. J. Disaster Risk Reduct. 2021, 60, 102261. [Google Scholar] [CrossRef]
- Moncloa, L. Actualización de datos del Gobierno de España. Available online: https://www.lamoncloa.gob.es/info-dana/paginas/2024/191124-datos-seguimiento-actuaciones-gobierno.aspx (accessed on 10 May 2025).
- Parkinson, J.; Davies, C.; Htet, K.L.; Steele, A. Strengthening resilience to flooding in Yangon using sustainable urban drainage systems. Proc. Inst. Civ. Eng. Munic. Eng. 2022, 175, 123–134. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Breuste, J.; Hof, A. Sustainable Drainage Systems for transitioning to sustainable urban flood management in the European Union: A review. J. Clean. Prod. 2020, 255, 120191. [Google Scholar] [CrossRef]
- Mason, D.C.; Bevington, J.; Dance, S.L.; Revilla-Romero, B.; Smith, R.; Vetra-Carvalho, S.; Cloke, H.L. Improving urban flood mapping by merging synthetic aperture radar-derived flood footprints with flood hazard maps. Water 2021, 13, 1577. [Google Scholar] [CrossRef]
- Li, C.; Jiao, Y.; Kan, G.; Fu, X.; Chai, F.; Yu, H.; Liang, K. Comparisons of Different Machine Learning-Based Rainfall—Runoff Simulations under Changing Environments. Water 2024, 16, 302. [Google Scholar] [CrossRef]
- Chang, C.; Li, Y.; Chen, Y.; Huang, J.J.; Zhang, Y. Advanced statistical analyses of urbanization impacts on heavy rainfall in the Beijing metropolitan area. Urban Clim. 2021, 40, 100987. [Google Scholar] [CrossRef]
- Franco, A.; García-Ayllón, S. Urban policies as a factor of vulnerability to flooding in Mediterranean urban areas: Retrospective spatial analysis of the case study of the Region of Murcia. In Proceedings of the 1st Conference on Future Challenges in Sustainable Urban Planning & Territorial Management (SUPTM 2022), Cartagena, Spain, 17–19 January 2022; p. 054503. [Google Scholar] [CrossRef]
- García-Ayllón, S.; Franco, A. Spatial correlation between urban planning patterns and vulnerability to flooding risk: A case study in Murcia (Spain). Land 2023, 12, 543. [Google Scholar] [CrossRef]
- Franco, A. Urban policies during the last four decades have influenced the risk of flooding in Cartagena (Spain): A retrospective spatial analysis. In Proceedings of the 2nd Conference on Future Challenges in Sustainable Urban Planning & Territorial Management (SUPTM 2024), Cartagena, Spain, 29–31 January 2024. [Google Scholar] [CrossRef]
- Jiang, Q.; Xiong, S.; Yang, F.; Huang, J. Simulation study on rain-flood regulation in urban “Gray-Green-Blue” spaces based on system dynamics: A case study of the Guitang River Basin in Changsha. Water 2024, 16, 109. [Google Scholar] [CrossRef]
- Vargas, J.; Olcina, J.; Paneque, P. Cartografía de riesgo de inundación en la planificación territorial para la gestión del riesgo de desastre. Escalas de trabajo y estudios de casos en España. EURE—Rev. Latinoam. Estud. Urbanos Reg. 2022, 48, 1–25. [Google Scholar] [CrossRef]
- Park, K.; Lee, E.H. Urban flood vulnerability analysis and prediction based on the land use using Deep Neural Network. Int. J. Disaster Risk Reduct. 2024, 101, 104231. [Google Scholar] [CrossRef]
- Ambily, P.; Chithra, N.R.; Firoz, M. A framework for urban pluvial flood resilient spatial planning through blue-green infrastructure. Int. J. Disaster Risk Reduct. 2024, 67, 104342. [Google Scholar] [CrossRef]
- Arya, S.; Kumar, A. Green infrastructure for sustainable stormwater management in an urban setting using SWMM-based multicriteria decision-making approach. J. Hydrol. Eng. 2024, 29, 04023044. [Google Scholar] [CrossRef]
- Ghosh, P.; Sudarsan, J.S.; Nithiyanantham, S. Nature-Based disaster risk reduction of floods in urban areas. Water Resour. Manag. 2024, 38, 1847–1866. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, L.; Yang, L.E.; Wang, Z.; Deng, X. Attributing effects of classified infrastructure management on mitigating urban flood risks: A case study in Beijing, China. Sustain. Cities Soc. 2024, 101, 105141. [Google Scholar] [CrossRef]
- Wangru, W.; Jing, G.; Jun, D.; Weilin, X. Effects of Air Vent Size and Location Design on Air Supply Efficiency in Flood Discharge Tunnel Operations. J. Hydraul. Eng. 2023, 149, 04023050. [Google Scholar] [CrossRef]
- Wei, W.; Weilin, X.; Jun, D.; Guo, Y. Self-Aeration Development and Fully Cross-Sectional Air Diffusion in High-Speed Open Channel Flows. J. Hydraul. Res. 2022, 60, 445–459. [Google Scholar] [CrossRef]
- Qi, X.; Qian, S.; Chen, K.; Li, J.; Wu, X.; Wang, Z.; Deng, Z.; Jiang, J. Dependence of Daily Precipitation and Wind Speed over Coastal Areas: Evidence from China’s Coastline. Hydrol. Res. 2023, 54, 491–507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, Á.; García-Ayllón, S. The Paradigm Shift in Scientific Interest on Flood Risk: From Hydraulic Analysis to Integrated Land Use Planning Approaches. Water 2025, 17, 2276. https://doi.org/10.3390/w17152276
Franco Á, García-Ayllón S. The Paradigm Shift in Scientific Interest on Flood Risk: From Hydraulic Analysis to Integrated Land Use Planning Approaches. Water. 2025; 17(15):2276. https://doi.org/10.3390/w17152276
Chicago/Turabian StyleFranco, Ángela, and Salvador García-Ayllón. 2025. "The Paradigm Shift in Scientific Interest on Flood Risk: From Hydraulic Analysis to Integrated Land Use Planning Approaches" Water 17, no. 15: 2276. https://doi.org/10.3390/w17152276
APA StyleFranco, Á., & García-Ayllón, S. (2025). The Paradigm Shift in Scientific Interest on Flood Risk: From Hydraulic Analysis to Integrated Land Use Planning Approaches. Water, 17(15), 2276. https://doi.org/10.3390/w17152276