Dose-Dependent Phytotoxicity of Pesticides in Simulated Nursery Runoff on Landscape Nursery Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Physiological Measurements and Growth
2.3. Statistical Analysis
3. Results
3.1. Leaf Visual Injury and Growth in Response to Pesticide Treatment
3.2. Physiological Performance in Response to Pesticide Treatments
3.3. Pesticide Absorption
4. Discussion
4.1. Growth and Physiology
4.2. Pesticide Absorption
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United States Department of Agriculture National Agricultural Statistics Service. Census of Horticultural Specialties (2014); 2012 Census Agriculture: Washington, DC, USA, 2015; AC-12-SS-3.
- Warsaw, A.L.; Fernandez, R.T.; Cregg, B.M.; Andresen, J.A. Container-grown ornamental plant growth and water runoff nutrient content and volume under four irrigation treatments. HortScience 2009, 44, 1573–1580. [Google Scholar]
- Danelon, M.; Kachenko, A.; McDonald, J.; Rolfe, C.; Yiasoumi, B. Nursery industry water management best practice guidelines 2010. In Nurs. Gard. Ind. Aust. 2010; Kachenko, A., Ed.; Nursery & Garden Industry Australia: New South Wales, Australia, 2010. [Google Scholar]
- Mathers, H.M.; Yeager, T.H.; Case, L.T. Improving irrigation water use in container nurseries. HortTechnology 2005, 15, 8–12. [Google Scholar] [CrossRef]
- Warsaw, A.L.; Thomas Fernandez, R.; Kort, D.R.; Cregg, B.M.; Rowe, B.; Vandervoort, C. Remediation of metalaxyl, trifluralin, and nitrate from nursery runoff using container-grown woody ornamentals and phytoremediation areas. Ecol. Eng. 2012, 47, 254–263. [Google Scholar] [CrossRef]
- Lao, W.J.; Arye, G.; Ernst, F.; Xu, Y.P.; Bondarenko, S.; Haver, D.; Kabashima, J.; Gan, J. Reduction of Pyrethroid Runoff from a Commercial Nursery; ACS Symposium Series; ACS Publication: Washington, DC, USA, 2008; Volume 991, pp. 428–446. [Google Scholar]
- Keese, R.J.; Camper, N.D.; Whitwell, T.; Riley, M.B.; Wilson, P.C. Herbicide Runoff from Ornamental Container Nurseries. J. Environ. Qual. 1994, 23, 320–324. [Google Scholar] [CrossRef]
- Brown, K. Water scarcity: Forecasting the future with spotty data. Science 2002, 297, 926–927. [Google Scholar] [CrossRef]
- Schmitz, C.; Lotze-campen, H.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 2013, 49, 3601–3617. [Google Scholar] [CrossRef]
- Capturing and Recycling Irrigation Runoff as a Pollution Prevention Measure. Available online: http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-7408/BAE-1518web.pdf (accessed on 8 November 2019).
- Bhandary, R.M.; Whitwell, T.; Briggs, J. Growth of Containerized Landscape Plants is Influenced by Herbicides Residues in Irrigation Water. Weed Technol. 1997, 11, 793–797. [Google Scholar] [CrossRef]
- Briggs, J.A.; Whitwell, T.; Riley, M.B. Effect of delayed irrigation on isoxaben and oryzalin runoff from a container nursery. Weed Sci. 2003, 51, 463–470. [Google Scholar] [CrossRef]
- Briggs, J.A.; Riley, M.B.; Whitwell, T. Quantification and remediation of pesticides in runoff water from containerized plant production. J. Environ. Qual. 1998, 27, 814–820. [Google Scholar] [CrossRef]
- Fernandez, R.T.; Whitwell, T.; Riley, M.B.; Bernard, C.R. Evaluating Semiaquatic Herbaceous Perennials for Use in Herbicide Phytoremediation. J. Am. Soc. Hortic. Sci. 1999, 124, 539–544. [Google Scholar] [CrossRef][Green Version]
- Neal, J.C.; Senesac, A.F. Preemergent Herbicide Safety in Container-grown Ornamental Grasses. HortScience 1991, 26, 157–159. [Google Scholar] [CrossRef][Green Version]
- Parween, T.; Jan, S.; Fatma, T. Alteration in nitrogen metabolism and plant growth during different developmental stages of green gram (Vigna radiata L.) in response to chlorpyrifos. Acta Physiol. Plant. 2011, 33, 2321–2328. [Google Scholar] [CrossRef]
- Parween, T.; Jan, S.; Mahmooduzzafar, S.; Fatma, T. Evaluation of oxidative stress in Vigna radiata L. in response to chlorpyrifos. Int. J. Environ. Sci. Technol. 2012, 9, 605–612. [Google Scholar] [CrossRef]
- Prasad, S.M.; Singh, A.; Singh, P. Physiological, biochemical and growth responses of Azolla pinnata to chlorpyrifos and cypermethrin pesticides exposure: A comparative study. Chem. Ecol. 2015, 31, 285–298. [Google Scholar] [CrossRef]
- Dow AgroSciences Specimen Label: Goal 2XL. Available online: http://www.cdms.net/ldat/ld5S1007.pdf (accessed on 8 November 2019).
- Lee, H.J.; Duke, S.O. Protoporphyrinogen IX-Oxidizing Activities Involved in the Mode of Action of Peroxidizing Herbicides. J. Agric. Food Chem. 1994, 42, 2610–2618. [Google Scholar] [CrossRef]
- Jursik, M.; Andr, J.; Holec, J.; Soukup, J. Efficacy and selectivity of post-emergent application of flumioxazin and oxyfluorfen in sunflower. Plant Soil Environ. 2011, 57, 532–539. [Google Scholar] [CrossRef][Green Version]
- Vea, E.; Palmer, C. IR-4 Ornamental Horticulture Program Oxyfluorfen Crop Safety. 2009. Available online: http://ir4.rutgers.edu/Ornamental/SummaryReports/OxyfluorfenDataSummary2009.pdf (accessed on 8 November 2019).
- Horowitz, M.; Elmore, C.; Boquist, D. Directed application of Goal (Oxyfluorfen) to container grown Euonymus, to minimize phytotoxicity and leaching. J. Environ. Hortic. 1989, 7, 17–21. [Google Scholar]
- Krugh, B.W.; Miles, D. Monitoring the effects of five “nonherbicidal” pesticide chemicals on terrestrial plants using chlorophyll fluorescence. Environ. Toxicol. Chem. 1996, 15, 495–500. [Google Scholar] [CrossRef]
- Spiers, J.D.; Davies, T.; He, C.; Heinz, K.M.; Bogran, C.E.; Starman, T.W. Do insecticide affect plant growth and development? Greenh. Grow. 2008, 2, 1–3. [Google Scholar]
- Vinet, L.; Zhedanov, A. Crop Stress and Its Management: Perspectives and Strategies; Venkateswarlu, B., Shanker, A.K., Shanker, C., Maheswari, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; ISBN 978-94-007-2219-4. [Google Scholar]
- Parween, T.; Jan, S.; Mahmooduzzafar, S.; Fatma, T. Assessing the impact of chlorpyrifos on growth, photosynthetic pigments and yield in Vigna radiata L. at different phenological stages. Afr. J. Agric. Res. 2011, 6, 4432–4440. [Google Scholar]
- Veeraswamy, J.; Padmavathi, T.; Venkateswarlu, K. Effect of selected insecticides on plant growth and mycorrhizal development in sorghum. Agric. Ecosyst. Environ. 1993, 43, 337–343. [Google Scholar] [CrossRef]
- Sharkey, T.D.; Bernacchi, C.J.; Farquhar, G.D.; Singsaas, E.L. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 2007, 30, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Sharkey, T.D. What gas exchange data can tell us about photosynthesis. Plant Cell Environ. 2016, 39, 1161–1163. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Saxena, D.M.; Lal, R. Effects of DDT, fenitrothion and chlorpyrifos on growth, photosynthesis and nitrogen fixation in Anabaena (Arm 310) and Aulosira fertilissima. Agric. Ecosyst. Environ. 1987, 19, 197–209. [Google Scholar] [CrossRef]
- Salihu, S.; Derr, J.F.; Hatzios, K.K. Differential Response of Ajuga (Ajuga reptans), Wintercreeper (Euonymus fortunei), and Dwarf Burning Bush (Euonymus alatus ‘Compacta’) to Root-and Shoot-Applied Isoxaben. Weed Technol. 1999, 13, 685–690. [Google Scholar] [CrossRef]
- Willoughby, I.; Clay, D.; Dixon, F. The effect of pre-emergent herbicides on germination and early growth of broadleaved species used for direct seeding. Forestry 2003, 76, 83–94. [Google Scholar] [CrossRef][Green Version]
- Gonzalez, M.P.; Karlik, J. Evaluation of Herbicides for Phytotoxicity to Rose Plants and Efficacy. J. Environ. Hortic. 1999, 17, 164. [Google Scholar]
- Riley, M.B.; Keese, R.J.; Camper, N.D.; Whitwell, T.; Chris, P.; Riley, M.B.; Keese, R.J.; Camper, N.D.; Whitwell, T.E.D.; Wilson, P.C. Pendimethalin and Oxyfluorfen Residues in Pond Water and Sediment from Container. Weed Technol. 1994, 8, 299–303. [Google Scholar] [CrossRef]
- Mangiafico, S.S.; Newman, J.; Merhaut, D.J.; Gan, J.; Faber, B.; Wu, L. Nutrients and Pesticides in Stormwater runoff and soil water in production nurseries and citrus and avocado groves in California. HortTechnology 2009, 19, 360–367. [Google Scholar] [CrossRef]
- Raina, R. Chemical Analysis of Pesticides Using GC/MS, GC/MS/MS, and LC/MS/MS. In Pesticides-Strategies for Pesticides Analysis; Stoytcheva, M., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar][Green Version]
- Stevens, P.J.G.; Baker, E.A. Factors affecting the foliar absorption and redistribution of pesticides. 1. Properties of leaf surfaces and their interactions with spray droplets. Pestic. Sci. 1987, 19, 265–281. [Google Scholar] [CrossRef]
- Poudyal, S.; Cregg, B.M. Workshop: Irrigating Nursery Crops with Recycled Run-off: A Review of the Potential Impact of Pesticides on Plant Growth and Physiology. HortTechnology. 2019. Available online: https://doi.org/10.21273/HORTTECH04302-19 (accessed on 8 November 2019).
- Heim, D.R.; Skomp, J.R.; Tschabold, E.E.; Larrinua, I.M. Isoxaben Inhibits the Synthesis of Acid Insoluble Cell Wall Materials in Arabidopsis thaliana. Plant Physiol. 1990, 93, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Priya, S.R.; Chinnusamy, C.; Arthanar, M.P.; Janaki, P. Carryover effect and plant injury from oxyfluorfen herbicide applied in transplanted rice. Int. J. Chem. Stud. 2017, 5, 535–539. [Google Scholar]
- Mathers, H. Herbicide Injury. Michigan State Univ. Coll. Agric. Nat. Resour. Available online: https://www.canr.msu.edu/uploads/files/623%20Nursery%20grower%20checklist%20TOM%20herbicide%20injury.pdf (accessed on 8 November 2019).
- Wichert, R.A.; Talbert, R.E. Soybean [Glycine max (L.)] Response to Lactofen. Weed Sci. 1993, 41, 23–27. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enrichment studies. Plant Physiol. 2011, 155, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Sherwani, S.I.; Arif, I.A.; Khan, H.A. Modes of Action of Different Classes of Herbicides. In Herbicides, Physiology of Action, and Safety; Price, A., Kelton, J., Sarunaite, L., Eds.; InTech: Rijeka, Croatia, 2015; pp. 165–186. [Google Scholar] [CrossRef]
- Wang, P.; Li, H.; Jia, W.; Chen, Y.; Gerhards, R. A fluorescence sensor capable of real-time herbicide effect monitoring in greenhouses and the field. Sensors 2018, 18, 3771. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Silva, F.; Carlos Costa, A.; Rodrigo Pereira Alves, R.; Aparecida Megguer, C. Chlorophyll Fluorescence as an Indicator of Cellular Damage by Glyphosate Herbicide in Raphanus sativus L. Plants. Am. J. Plant Sci. 2014, 5, 2509–2519. [Google Scholar] [CrossRef]
- Singh, S.K.; Badgujar, G.; Reddy, V.R.; Fleisher, D.H.; Bunce, J.A. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. J. Plant Physiol. 2013, 170, 801–813. [Google Scholar] [CrossRef]
- Dinh, T.H.; Watanabe, K.; Takaragawa, H.; Nakabaru, M.; Kawamitsu, Y. Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels. Plant Prod. Sci. 2017, 20, 412–422. [Google Scholar] [CrossRef][Green Version]
- Chun, J.C.; Lee, H.J.; Lim, S.J.; Kim, S.E.; Guh, J.O. Comparative absorption, translocation, and metabolism of foliar-applied oxyfluorfen in wheat and barley. Pestic. Biochem. Physiol. 2001, 70, 118–125. [Google Scholar] [CrossRef]
- Schneegurt, M.A.; Roberts, J.L.; Bjelk, L.A.; Gerwick, B.C. Postemergence Activity of Isoxaben. Weed Technol. 1994, 8, 183–189. [Google Scholar] [CrossRef]
- Wehtje, G.; Gilliam, C.H.; Miller, M.E.; Altland, J.E. Foliar vs. Root Sensitivity of Hairy Bittercress (Cardamine hirsuta) to Isoxaben. Weed Technol. 2006, 20, 326–333. [Google Scholar] [CrossRef]
- Heim, D.R.; Bjelk, L.A.; James, J.; Schneegurt, M.A.; Larrinua, I.M. Mechanism of isoxaben tolerance in Agrostis palustris var. Penncross. J. Exp. Bot. 1993, 44, 1185–1189. [Google Scholar] [CrossRef]
- Lu, M.-X.; Jiang, W.W.; Wang, J.-L.; Jian, Q.; Shen, Y.; Liu, X.-J.; Yu, X.-Y. Persistence and Dissipation of Chlorpyrifos in Brassica Chinensis, Lettuce, Celery, Asparagus Lettuce, Eggplant, and Pepper in a Greenhouse. PLoS ONE 2014, 9, e100556. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhang, F.; Deng, K.; Yu, C.; Liu, S.; Zhao, P.; Pan, C. Spinach or amaranth contains highest residue of metalaxyl, fluazifop-p-butyl, chlorpyrifos, and lambda-cyhalothrin on six leaf vegetables upon open field application. J. Agric. Food Chem. 2013, 61, 2039–2044. [Google Scholar] [CrossRef] [PubMed]
- Copaja, S.V.; Vergara, R.; Bravo, H.R. Bioavailability of Chlorpyrifos in Wheat Plants (Triticum aestivum). Agric. Sci. 2014, 5, 660–667. [Google Scholar]
- Wang, L.; Jiang, X.; Yan, D.; Wu, J.; Bian, Y.; Wang, F. Behavior and fate of chlorpyrifos introduced into soil–crop systems by irrigation. Chemosphere 2007, 66, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Duke, S. Overview of Herbicide Mechanisms of Action. Environ. Health Perspect. 1990, 87, 263–271. [Google Scholar] [CrossRef]
Concentration (mg/L) | Oxyfluorfen | ||
Hydrangea | Cornus | Hosta | |
0 | 135.71ab | 189.65a | 31.58a |
0.005 | 152.97a | 180.68a | 30.23a |
0.01 | 153.11a | 188.44a | 23.63a |
0.015 | 130.65ab | 210.92a | 22.72a |
0.02 | 106.49b | 207.20a | 17.93a |
Concentration (mg/L) | Chlorpyrifos | ||
Hydrangea | Cornus | Hosta | |
0 | 135.71a | 189.65a | 31.58a |
0.05 | 139.71a | 166.40a | 29.76a |
0.1 | 138.25a | 213.63a | 41.32a |
0.2 | 138.62a | 197.22a | 32.38a |
0.4 | 143.45a | 194.87a | 23.71a |
Concentration (mg/L) | Isoxaben | ||
Hydrangea | Cornus | Hosta | |
0 | 135.71a | 189.65a | 31.58a |
0.15 | 140.63a | 225.85a | 19.11bc |
0.35 | 155.07a | 198.92a | 16.54c |
0.7 | 161.66a | 211.75a | 13.05c |
1.4 | 141.34a | 186.94a | 27.20ab |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudyal, S.; Fernandez, R.T.; Owen, J.; Cregg, B. Dose-Dependent Phytotoxicity of Pesticides in Simulated Nursery Runoff on Landscape Nursery Plants. Water 2019, 11, 2354. https://doi.org/10.3390/w11112354
Poudyal S, Fernandez RT, Owen J, Cregg B. Dose-Dependent Phytotoxicity of Pesticides in Simulated Nursery Runoff on Landscape Nursery Plants. Water. 2019; 11(11):2354. https://doi.org/10.3390/w11112354
Chicago/Turabian StylePoudyal, Shital, R. Thomas Fernandez, James Owen, and Bert Cregg. 2019. "Dose-Dependent Phytotoxicity of Pesticides in Simulated Nursery Runoff on Landscape Nursery Plants" Water 11, no. 11: 2354. https://doi.org/10.3390/w11112354