Advancements in Livestock Staphylococcus sp.

A special issue of Veterinary Sciences (ISSN 2306-7381). This special issue belongs to the section "Veterinary Microbiology, Parasitology and Immunology".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 573

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
Department of Food Science and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil
Interests: antimicrobial resistance; epidemiology of Staphylococcus sp.; molecular biology and bioinformatics; alternatives to traditional antimicrobials

Special Issue Information

Dear Colleagues,

Advancements in our understanding of livestock Staphylococcus species are crucial for animal and public health, including food safety. Many aspects of this genera could be exploited. Whole genome sequencing offers unprecedented insights into the genetic diversity of Staphylococcus strains, revealing mechanisms of virulence and antibiotic resistance. Additionally, innovations in rapid detection methods, such as molecular diagnostics, play a vital role in identifying Staphylococcus infections in livestock. Early detection allows for timely interventions, minimizing the spread of infections. Moreover, the search for alternatives to traditional antibiotics has been studied, driven by the urgent need to address antimicrobial resistance. Also, innovative therapies, including bacteriophage applications and the use of probiotics, are being explored. Research on non-aureus Staphylococci is also underway. Simultaneously, advancements in vaccine development show promise, particularly for mastitis management, which could revolutionize herd health protocols. In this context, interdisciplinary collaborations among veterinarians, microbiologists, and agricultural scientists will be pivotal in tackling these complex challenges. This Special Issue aims to summarize recent advancements in the study of livestock Staphylococcus species while emphasizing their implications for animal health, economic viability, and public health.

Dr. Nathália Cristina Cirone Silva
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Veterinary Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • MRSA
  • livestock Staphylococci
  • multi-drug resistance
  • non-aureus Staphylococci
  • alternatives to antimicrobials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 659 KiB  
Article
Polyhexamethylene Biguanide Nanoparticles Inhibit Biofilm Formation by Mastitis-Causing Staphylococcus aureus
by Renata de Freitas Leite, Breno Luis Nery Garcia, Kristian da Silva Barbosa, Thatiane Mendes Mitsunaga, Carlos Eduardo Fidelis, Bruna Juliana Moreira Dias, Renata Rank de Miranda, Valtencir Zucolotto, Liam Good and Marcos Veiga dos Santos
Vet. Sci. 2025, 12(5), 507; https://doi.org/10.3390/vetsci12050507 - 21 May 2025
Viewed by 306
Abstract
Staphylococcus aureus is a mastitis pathogen that compromises cow health and causes significant economic losses in the dairy industry. High antimicrobial resistance and biofilm formation by S. aureus limit the efficacy of conventional treatments. This study evaluated the potential of polyhexamethylene biguanide nanoparticles [...] Read more.
Staphylococcus aureus is a mastitis pathogen that compromises cow health and causes significant economic losses in the dairy industry. High antimicrobial resistance and biofilm formation by S. aureus limit the efficacy of conventional treatments. This study evaluated the potential of polyhexamethylene biguanide nanoparticles (PHMB NPs) against mastitis-causing S. aureus. PHMB NPs showed low toxicity to bovine mammary epithelial cells (MAC-T cells) at concentrations up to four times higher than the minimum inhibitory concentration (1 µg/mL) against S. aureus. In Experiment 1, PHMB NPs significantly reduced biofilm formation by S. aureus by 50% at concentrations ≥1 µg/mL, though they showed limited efficacy against preformed biofilms. In Experiment 2, using an excised teat model, PHMB NPs reduced S. aureus concentrations by 37.57% compared to conventional disinfectants (chlorhexidine gluconate, povidone–iodine, and sodium dichloroisocyanurate), though limited by short contact time. These findings highlight the potential of PHMB NPs for the control of S. aureus growth and biofilm formation. Full article
(This article belongs to the Special Issue Advancements in Livestock Staphylococcus sp.)
Show Figures

Figure 1

Back to TopTop