Ruminant Mastitis: Therapies and Control

A special issue of Veterinary Sciences (ISSN 2306-7381). This special issue belongs to the section "Veterinary Microbiology, Parasitology and Immunology".

Deadline for manuscript submissions: 1 February 2026 | Viewed by 4322

Special Issue Editor


E-Mail Website
Guest Editor
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
Interests: dairy cow; mastitis; endometritis; hoof desease; calf diarrhea; heat stress

Special Issue Information

Dear Colleagues,

Mastitis is an important disease in dairy farming, which causes lots of economic losses every year. Although research and efforts have been made, mastitis is still the first issue that should be considered in the development of the industry, which is related to food safety and human health. Many causes have been involved in mastitis, e.g., bacteria, viruses, machine disorders, heat stress, nutritional factors, etc. Therefore, this Special Issue on “Ruminant Mastitis: Therapies and Control” aims to promote research on the mechanism of mastitis and others about the prevention, treatment, and control development in practical farms or experimental animal models.

Prof. Dr. Heng Wang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Veterinary Sciences is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dairy cow
  • cattle
  • sheep
  • goat
  • mastitis
  • E. coli
  • Klebsiella pneumoniae
  • Staphylococcus aureus
  • Streptococcus
  • virus
  • prevention and control

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 277 KiB  
Article
Neural Network-Aided Milk Somatic Cell Count Increase Prediction
by Sára Ágnes Nagy, István Csabai, Tamás Varga, Bettina Póth-Szebenyi, György Gábor and Norbert Solymosi
Vet. Sci. 2025, 12(5), 420; https://doi.org/10.3390/vetsci12050420 - 29 Apr 2025
Viewed by 127
Abstract
Subclinical mastitis (SM) is the most economically damaging yet often visually undetectable disease of dairy cows. Early detection and treatment can reduce the loss caused by the disease; thus, the continuous improvement of SM diagnostic methods is necessary. Although milk’s somatic cell count [...] Read more.
Subclinical mastitis (SM) is the most economically damaging yet often visually undetectable disease of dairy cows. Early detection and treatment can reduce the loss caused by the disease; thus, the continuous improvement of SM diagnostic methods is necessary. Although milk’s somatic cell count (SCC) is commonly measured for diagnostic purposes, its direct determination is not widely used in everyday practice. The primary objective of our work was to investigate whether the predictive value of SM diagnostics can be improved by training artificial neural networks (ANNs) on data generated using typical conventional milking systems. The best ANN classifier had a sensitivity of 0.54 and a specificity of 0.77, which is comparable to performances of various California Mastitis Tests (CMT) found in the literature. Combining two diagnostic tests, ANN and CMT, we concluded that the positive predictive value could be up to 50% higher than the value provided by the individual CMT. While implementing CMT is a labor-intensive process on herd-level, in milking machines where milk properties or milk yield data can be measured automatically, similar to our work, SCC-increase predictions for all individuals could be obtained daily basis. Full article
(This article belongs to the Special Issue Ruminant Mastitis: Therapies and Control)
Show Figures

Figure 1

20 pages, 6584 KiB  
Article
Probiotic Characterization of Lactiplantibacillus paraplantarum SDN1.2 and Its Anti-Inflammatory Effect on Klebsiella pneumoniae-Infected Mammary Glands
by Jia Cheng, Jingdi Tong, Can Li, Ziyan Wang, Hao Li, Meiyi Ren, Jinshang Song, Deyuan Song, Qinna Xie and Mingchao Liu
Vet. Sci. 2025, 12(4), 323; https://doi.org/10.3390/vetsci12040323 - 1 Apr 2025
Viewed by 355
Abstract
K. pneumoniae is a major cause of bovine mastitis worldwide, making it difficult to control due to its resistance to multiple drugs. L. paraplantarum has been explored as a promising new approach to fighting bovine mastitis. In this study, the probiotic potential and [...] Read more.
K. pneumoniae is a major cause of bovine mastitis worldwide, making it difficult to control due to its resistance to multiple drugs. L. paraplantarum has been explored as a promising new approach to fighting bovine mastitis. In this study, the probiotic potential and safety of L. paraplantarum SDN1.2, as well as its ex vivo and in vivo anti-inflammatory effects against K. pneumoniae-induced mastitis, were comprehensively investigated using bioinformatics analyses and experimental validation methods. The results revealed that L. paraplantarum SDN1.2 exhibits non-hemolytic activity, is not cytotoxic, lacks virulence genes (e.g., adhesion factors, toxins, and invasion factors) and antibiotic resistance genes (e.g., beta-lactamases and tetracycline resistance genes), as supported by whole-genome sequencing, and significantly inhibits the growth of K. pneumoniae, as evaluated by antimicrobial tests. Following further validation in vitro, L. paraplantarum SDN1.2 demonstrated the capability to inhibit the adhesion and invasion of K. pneumoniae to bMECs. In a mouse model of K. pneumoniae-induced mastitis, L. paraplantarum SDN1.2 reduced the extent of neutrophil infiltration and inflammatory lesions. Furthermore, L. paraplantarum SDN1.2 pretreatment significantly reduced myeloperoxidase (MPO) activity and the expression of inflammatory cytokines (IL-6, IL-1β, and TNF-a) in mouse mammary gland tissue. In K. pneumoniae-infected bMECs, L. paraplantarum SDN1.2 significantly lowered lactate dehydrogenase (LDH) levels and expression of inflammatory cytokines such as IL-6, IL-1β, and TNF-α. The results demonstrated that the newly isolated L. paraplantarum SDN1.2 from bovine sources exhibits promising characteristics as a safe probiotic for the alleviation of bovine mastitis due to its safety profile and anti-inflammatory and antibacterial properties. Full article
(This article belongs to the Special Issue Ruminant Mastitis: Therapies and Control)
Show Figures

Figure 1

14 pages, 2366 KiB  
Article
Major Causative Bacteria of Dairy Cow Mastitis in the Inner Mongolia Autonomous Region, China, 2015–2024: An Epidemiologic Survey and Analysis
by Hongmei Zhao, Ting Guo, Yaping Zhou, Fengmiao Zhao, Yajie Sun, Yuchen Wang, Yuchen Bian, Guangyuan Tian, Chunxia Wu, Qi Cui, Xue Zhou, Jinlei Cui, Han Si and Yongqing Hao
Vet. Sci. 2025, 12(3), 197; https://doi.org/10.3390/vetsci12030197 - 21 Feb 2025
Viewed by 873
Abstract
In this study, we sought to evaluate the prevalence of bacterial pathogens of mastitis in dairy cattle in the Inner Mongolia Autonomous Region, China. The study was conducted from 2015 to 2024 using a total of 12,053 clinical mastitis (CM) and sub-clinical mastitis [...] Read more.
In this study, we sought to evaluate the prevalence of bacterial pathogens of mastitis in dairy cattle in the Inner Mongolia Autonomous Region, China. The study was conducted from 2015 to 2024 using a total of 12,053 clinical mastitis (CM) and sub-clinical mastitis (SCM) samples. The pathogens were isolated and identified by standard bacteriological and mycological methods. The most common pathogens isolated were Escherichia coli (13.82%), Staphylococcus aureus (10.28%), Klebsiella spp. (8.96%), Streptococcus agalactiae (7.45%), Streptococcus uberis (6.60%), coagulase-negative staphylococci (5.84%), and Streptococcus dysgalactiae (4.21%). From 2015 to 2017, the primary pathogens responsible for causing mastitis in cows were Staphylococcus aureus and Streptococcus agalactiae. In 2018, the most frequently isolated pathogen was Staphylococcus aureus. Notably, the isolation rate of Escherichia coli increased from 12.31% to 21.72%, and the isolation rate of Klebsiella spp. increased from 7.52% to 14.01% from 2019–2024. Mycoplasma was only detected in clinical mastitis cases, with a separation rate as high as 6.95%. In summary, the isolation rate of environmental pathogens is gradually increasing, while that of contagious pathogens has been continuously declining. This indicates that the current prevention strategies for infectious pathogens are effective. As a next step, it will be important to develop new strategies specifically targeting environmental pathogenic microorganisms. Full article
(This article belongs to the Special Issue Ruminant Mastitis: Therapies and Control)
Show Figures

Figure 1

13 pages, 2638 KiB  
Article
Difference Analysis on Virulence Genes, Biofilms and Antimicrobial Susceptibility of Escherichia coli from Clinical and Subclinical Bovine Mastitis
by Jiakun Zuo, Zhaoyang Lv, Liyan Lian, Zihao Wu, Shaodong Fu, Haiyang Zhang, Jing Wu, Zihao Pan, Yong Yu, Wei Chen, Wei Jiang, Huifang Yin, Zhaoguo Chen, Yunpeng Yi, Xiangan Han and Jinfeng Miao
Vet. Sci. 2025, 12(2), 132; https://doi.org/10.3390/vetsci12020132 - 6 Feb 2025
Viewed by 868
Abstract
Escherichia coli (E. coli) has the ability to induce clinical and subclinical mastitis in dairy cows, causing a huge loss for the dairy industry. In this study, 51 subclinical mastitis isolates and 36 clinical mastitis isolates from eight provinces of China [...] Read more.
Escherichia coli (E. coli) has the ability to induce clinical and subclinical mastitis in dairy cows, causing a huge loss for the dairy industry. In this study, 51 subclinical mastitis isolates and 36 clinical mastitis isolates from eight provinces of China between 2019 and 2021 were used to investigate the differences in their biological characteristics. The results showed that B1 (52.9%) and A (39.1%) were the predominant phylogroups; R1 (50.6%) was the predominant lipopolysaccharide (LPS) core type; and 44 STs (ST10 and ST58 were the most sequence-prevalent STs) and 2 new STs (ST14828 and ST14829) were identified; however, no significant difference was observed between the clinical and subclinical group strains. To compare the virulence gene differences between the clinical and subclinical mastitis-related isolates, 18 common virulence genes (including afaE, eaeA, papC, saa, sfa, ompA, aer, irp2, iucD, escV, sepD, east1, estB, stx2e, CNF1, cba, hlyA and traT) were determined using the PCR method. The results showed that the detection rates of traT, irp2 and iucD in clinical mastitis isolates were significantly higher than those in subclinical mastitis isolates (p ˂ 0.05). Meanwhile, subclinical-group E. coli had stronger biofilm formation abilities than the clinical group (p < 0.05) in 78 (89.7%) mastitis-related E. coli that could form biofilms. Furthermore, 87 mastitis-related E. coli showed severe resistance against tetracycline (37.9%), ampicillin (36.8%), streptomycin (34.5%) and cotrimoxazole (28.7%); their most prevalent resistance genes were blaCTX-M (33.3%), tetA (27.6%), sul2 (18.4%) and strB (28.7%). It was noteworthy that the clinical-group strains had a higher resistance against ampicillin and possessed higher amounts of the resistance gene blaCTX-M (p < 0.05) compared to the subclinical group. This study aims to provide references for preventing the E. coli isolates from inducing different types of mastitis. Full article
(This article belongs to the Special Issue Ruminant Mastitis: Therapies and Control)
Show Figures

Figure 1

14 pages, 4925 KiB  
Article
The Effect of Meloxicam on Inflammatory Response and Oxidative Stress Induced by Klebsiella pneumoniae in Bovine Mammary Epithelial Cells
by Kangjun Liu, Shangfei Qiu, Li Fang, Luying Cui, Junsheng Dong, Long Guo, Xia Meng, Jianji Li and Heng Wang
Vet. Sci. 2024, 11(12), 607; https://doi.org/10.3390/vetsci11120607 - 29 Nov 2024
Viewed by 1189
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen associated with clinical mastitis in cattle. Anti-inflammatory drugs are necessary to alleviate pain and inflammation during clinical mastitis. Among many drugs, meloxicam (MEL) has been widely used in clinical mastitis because of its [...] Read more.
Klebsiella pneumoniae (K. pneumoniae) is a significant pathogen associated with clinical mastitis in cattle. Anti-inflammatory drugs are necessary to alleviate pain and inflammation during clinical mastitis. Among many drugs, meloxicam (MEL) has been widely used in clinical mastitis because of its excellent inhibitory effect on the cyclooxygenase-2 (COX-2) enzyme. However, the effectiveness of MEL on the inflammatory response and oxidative stress induced by K. pneumoniae are unclear. In the present study, primary BMECs were infected with K. pneumoniae in the presence or absence of plasma maintenance concentration of MEL (0.5 and 5 μM). Following 1 or 3 h of combined treatment with K. pneumoniae and MEL, BMECs were gathered to assess the related indicators. The results showed that MEL at plasma maintenance concentrations exerted no influence on the viability of uninfected BMECs and also had no impact on bacterial load in BMECs. At these concentrations, MEL was able to inhibit the mRNA expression of COX-2, Interleukin (IL)-1β, Tumor necrosis factor α (TNF-α), and IL-6 while simultaneously elevating the mRNA levels of IL-8 in K. pneumoniae-infected BMECs. MEL had clear effects on relieving oxidative stress by increasing the activity of superoxide dismutase (SOD) and catalase (CAT) and the level of total antioxidant capacity (T-AOC). The mechanisms by which MEL mitigated the inflammatory response and oxidative stress were partially attributed to inhibition of the nuclear transcription factor-kappa B (NF-κB) signaling pathway and improvement of the activation of the nuclear factor erythroid 2-related factors (Nrf2) signaling pathway. To conclude, the results manifested that MEL at plasma maintenance concentrations protected BMECs from inflammatory and oxidative damage induced by K. pneumoniae. Full article
(This article belongs to the Special Issue Ruminant Mastitis: Therapies and Control)
Show Figures

Figure 1

Back to TopTop