Special Issue "Plant Biotic and Abiotic Stress Tolerance: Physiological and Molecular Approaches for Sustainable Agricultural Production"

A special issue of Sustainability (ISSN 2071-1050).

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editor

Dr. Mohamed A. El-Esawi
Website SciProfiles
Guest Editor
Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
Interests: plant molecular biology and biotechnology; plant biostimulants; plant-microbe interactions; mycorrhizal fungi and plants; biological control of diseases; abiotic and biotic stresses; heavy metals and phytoremediation; antimicrobials; secondary metabolites and antioxidants; natural products; genetics and molecular phylogeny; plant and microbial omics
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Plants face various harmful stress factors which limit their growth and productivity. To enhance plant growth and yield, it is important to understand how plants respond to such numerous stresses and to exploit the gained information in stress tolerance breeding programs. Various plant biostimulants play essential roles in defense responses against biotic and abiotic stresses such as phytohormones, natural extracts, substances, …etc.

This Special Issue, therefore, seeks contributions addressing how plant species respond to various biotic and abiotic stresses, such as microbial diseases, salinity, drought, cold, heat, flooding, nutrient deficiency, and heavy metals. It welcomes reviews, perspectives, communications, and original research articles focusing on the physiological and molecular understanding of biotic and abiotic stress responses in plant species, as well as discussing the plant biostimulants roles and changes in gene expression patterns and their regulation. Approaches to enhance stress tolerance and crop yield under stress conditions are also of particular interest.

Dr. Mohamed A. El-Esawi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sustainability is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • salinity and drought stress
  • heat and cold stress
  • flooding stress
  • heavy metals
  • nutrient deficiency
  • plant disease susceptibility and resistance
  • plant-microbe interaction
  • plant biostimulants
  • phytohormones
  • stress tolerance breeding
  • biotechnology and gene regulation

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Fertigation of Ajwain (Trachyspermum ammi L.) with Fe-Glutamate Confers Better Plant Performance and Drought Tolerance in Comparison with FeSO4
Sustainability 2020, 12(17), 7119; https://doi.org/10.3390/su12177119 - 31 Aug 2020
Abstract
Shortage of fresh water limits crop yield. Different ways including the use of chemicals are being employed for the improvement in yield through induction of plant performance. In the present study, ajwain plants grown under water stress and normal irrigation conditions were fertigated [...] Read more.
Shortage of fresh water limits crop yield. Different ways including the use of chemicals are being employed for the improvement in yield through induction of plant performance. In the present study, ajwain plants grown under water stress and normal irrigation conditions were fertigated with Fe-chelated glutamate (Fe-Glu), as a foliar spray for the induction of plant performance in comparison with FeSO4. Water shortage adversely affected the plant growth and seed yield, associated with decreased uptake of water and nutrients, along with perturbations in different physio-biochemical attributes. On the other hand, Fe-Glu and FeSO4 fertigation improved plant performance under water stress and normal irrigation conditions. Fe-Glu and FeSO4 fertigation ameliorated the adverse effects of water stress on biomass and seed production, improved water and nutrients uptake, increased the accumulation of essential amino acids, leaf chlorophyll and carotenoids, and reduced the lipid peroxidation due to the induction of antioxidative mechanisms. Fertigation of Fe-Glu and FeSO4 also improved Fe uptake and conferred better mobility and availability of Fe for plants when applied in chelated form. Overall, a significant improvement in ajwain performance under water stress and normal irrigation conditions was recorded due to the fertigation of Fe-Glu as compared with FeSO4. Full article
Show Figures

Figure 1

Open AccessArticle
Iron–Lysine Mediated Alleviation of Chromium Toxicity in Spinach (Spinacia oleracea L.) Plants in Relation to Morpho-Physiological Traits and Iron Uptake When Irrigated with Tannery Wastewater
Sustainability 2020, 12(16), 6690; https://doi.org/10.3390/su12166690 - 18 Aug 2020
Cited by 2
Abstract
Chromium (Cr) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. However, the role of micronutrient-amino chelates on reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous application of [...] Read more.
Chromium (Cr) is among the most widespread toxic trace elements found in agricultural soils due to various anthropogenic activities. However, the role of micronutrient-amino chelates on reducing Cr toxicity in crop plants was recently introduced. In the current experiment, the exogenous application of micronutrients [iron (Fe)] chelated with amino acid [lysine (lys)] was examined, using an in vivo approach that involved plant growth and biomass, photosynthetic pigments and gaseous exchange parameters, oxidative stress indicators and antioxidant response. The uptake and accumulation of Fe and Cr were determined under different levels of tannery wastewater (33, 66, 100%) used along with the exogenous supplementation of Fe-lys (5 mM) to Spinacia oleracea plants. Results revealed that tannery wastewater in the soil decreased plant growth and growth-related attributes, photosynthetic apparatus and Fe contents in different parts of the plants. In contrast, the addition of different levels of tannery wastewater to the soil significantly increased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL), which induced oxidative damage in the roots and leaves of S. oleracea plants. However, S. oleracea plants increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), which scavenge the over-production of reactive oxygen species (ROS). Cr toxicity can be overcome by the supplementation of Fe-lys, which significantly increased plant growth and biomass, improved photosynthetic machinery and increased the activities of different antioxidative enzymes, even in the plants grown under different levels of tannery wastewater in the soil. Furthermore, the supplementation of Fe-lys increased the contents of essential nutrients (Fe) and decreased the contents of Cr in all plant parts compared to the plants cultivated in tannery wastewater without application of Fe-lys. In conclusion, the application of Fe-lys is an innovative approach to mitigate Cr stress in spinach plants, which not only increased plant growth and biomass but also decreased the Cr contents in different plant organs. Full article
Show Figures

Graphical abstract

Open AccessArticle
Possibility of Increasing the Growth and Photosynthetic Properties of Precocious Walnut by Grafting
Sustainability 2020, 12(12), 5178; https://doi.org/10.3390/su12125178 - 24 Jun 2020
Abstract
Plant growth characteristics after grafting are mainly dependent on photosynthesis performance, which may be influenced by grafting combinations with different rootstocks and scions. In this study, we used one-year-old walnut grafts to investigate the grafting compatibility between precocious (‘Liaoning 1’, L) and hybrid [...] Read more.
Plant growth characteristics after grafting are mainly dependent on photosynthesis performance, which may be influenced by grafting combinations with different rootstocks and scions. In this study, we used one-year-old walnut grafts to investigate the grafting compatibility between precocious (‘Liaoning 1’, L) and hybrid (‘Zhong Ning Sheng’, Z) walnut, as well as rootstock and scion impact on the growth and photosynthetic properties of walnut trees. The results showed that grafting compatibility between the two varieties is high, with survival rates upward of 86%. Overwintering survival of grafted seedlings was as high as 100%, which indicated that the allopolyploid had good resistance to low-temperature stress. The homograft of the hybrid walnut had the highest net photosynthesis rate (18.77 μmol·m−2s−1, Z/Z) and growth characteristics, which could be due to its higher transpiration rate and stomatal conductance, whereas the homograft of precocious walnut presented the lowest net photosynthesis rate (15.08 μmol·m−2s−1, L/L) and growth characteristics. Significant improvements in the net photosynthesis rate (15.97 and 15.24 μmol·m−2s−1 for L/Z and Z/L, respectively) and growth characteristics of precocious walnut were noticed during grafting of the hybrid walnut, which could have been contributed by their transpiration rate. The results of this study serve as a guide for the selection and breeding of good rootstock to improve plant growth characteristics and photosynthetic efficiency. We conclude that good rootstock selection improves plant growth potential and could play an important role in sustainable production. Full article
Show Figures

Figure 1

Open AccessArticle
Mitigation of Heat Stress in Solanum lycopersicum L. by ACC-deaminase and Exopolysaccharide Producing Bacillus cereus: Effects on Biochemical Profiling
Sustainability 2020, 12(6), 2159; https://doi.org/10.3390/su12062159 - 11 Mar 2020
Abstract
Soil microorganisms might be assessed for their capabilities of plant growth promotion in order to identify heat tolerant strategies for crop production. The planned study was conducted to determine the potential of heat tolerant plant growth promoting rhizobacteria (PGPR) in mitigating heat stress [...] Read more.
Soil microorganisms might be assessed for their capabilities of plant growth promotion in order to identify heat tolerant strategies for crop production. The planned study was conducted to determine the potential of heat tolerant plant growth promoting rhizobacteria (PGPR) in mitigating heat stress effects in tomato. Bacillus cereus was evaluated for plant growth promoting activities and assessed for 1-aminocyclopropane-1-carboxylate (ACC-deaminase) (0.76–C0.9 μM/mg protein/h), and exopolysaccharide (0.66–C0.91 mg/mL) under normal and heat stressed conditions. Plant growth regulators were evaluated through High Performance Liquid Chromatography. Bacterial inoculation effects on important physiological and biochemical parameters were evaluated under normal and heat stressed conditions in growth chamber. The morphological-physiological traits significantly revealed drastic effects on both of un-inoculated tomato varieties under heat stress conditions. Bacterial augmentation significantly promoted shoot, root length, leaf surface area, fresh and dry weight. Heat stress enhanced extracellular polymeric substances (EPS) production and cleavage of ACC into a-ketobutyrate and ammonia due to ACC-deaminase producing bacteria that significantly reduced the adverse effects of heat on tomato growth. In conclusion, the applied plant growth promoting rhizobacteria (PGPR) bacterial strain proved as potential candidate for improving tomato crop growing under heat stressed conditions. However, it is highly suggested to validate the current results by conducting field trials. Full article
Show Figures

Figure 1

Open AccessArticle
Genotoxic and Anatomical Deteriorations Associated with Potentially Toxic Elements Accumulation in Water Hyacinth Grown in Drainage Water Resources
Sustainability 2020, 12(5), 2147; https://doi.org/10.3390/su12052147 - 10 Mar 2020
Abstract
Potentially toxic elements (PTEs)-induced genotoxicity on aquatic plants is still an open question. Herein, a single clone from a population of water hyacinth covering a large distribution area of Nile River (freshwater) was transplanted in two drainage water resources to explore the hazardous [...] Read more.
Potentially toxic elements (PTEs)-induced genotoxicity on aquatic plants is still an open question. Herein, a single clone from a population of water hyacinth covering a large distribution area of Nile River (freshwater) was transplanted in two drainage water resources to explore the hazardous effect of PTEs on molecular, biochemical and anatomical characters of plants compared to those grown in freshwater. Inductivity Coupled Plasma (ICP) analysis indicated that PTEs concentrations in water resources were relatively low in most cases. However, the high tendency of water hyacinth to bio-accumulate and bio-magnify PTEs maximized their concentrations in plant samples (roots in particular). A Random Amplified Polymorphic DNA (RAPD) assay showed the genotoxic effects of PTEs on plants grown in drainage water. PTEs accumulation caused substantial alterations in DNA profiles including the presence or absence of certain bands and even the appearance of new bands. Plants grown in drainage water exhibited several mutations on the electrophoretic profiles and banding pattern of total protein, especially proteins isolated from roots. Several anatomical deteriorations were observed on PTEs-stressed plants including reductions in the thickness of epidermis, cortex and endodermis as well as vascular cylinder diameter. The research findings of this investigation may provide some new insights regarding molecular, biochemical and anatomical responses of water hyacinth grown in drainage water resources. Full article
Show Figures

Figure 1

Open AccessArticle
Exogenous Application of Proline and Salicylic Acid can Mitigate the Injurious Impacts of Drought Stress on Barley Plants Associated with Physiological and Histological Characters
Sustainability 2020, 12(5), 1736; https://doi.org/10.3390/su12051736 - 26 Feb 2020
Cited by 4
Abstract
Barley is a very important crop worldwide and has good impact in preserving food security. The impacts of 10 mM proline and 0.5 mM salicylic acid were evaluated on water stressed barley plants (Hordeum vulgare L. Giza126). Salicylic acid and proline treatments [...] Read more.
Barley is a very important crop worldwide and has good impact in preserving food security. The impacts of 10 mM proline and 0.5 mM salicylic acid were evaluated on water stressed barley plants (Hordeum vulgare L. Giza126). Salicylic acid and proline treatments led to increased stem length, plant dry weights, chlorophyll concentration, relative water content, activity of antioxidant enzymes, and grain yield under drought stress. Nevertheless, lipid peroxidation, electrolyte leakage (EL), superoxide (O2·−), and hydrogen peroxide (H2O2) significantly decreased in treated barley plants with proline and salicylic acid in both growing seasons as compared with drought treatment only, which caused significant decrease in stem length, plant dry weights, chlorophyll concentration, activity of antioxidant enzymes, as well as biological and grain yield. These results demonstrated the importance of salicylic acid and proline as tolerance inducers of drought stress in barley plants. Full article
Show Figures

Figure 1

Open AccessArticle
Thymelaea hirsuta and Echinops spinosus: Xerophytic Plants with High Potential for First-Generation Biodiesel Production
Sustainability 2020, 12(3), 1137; https://doi.org/10.3390/su12031137 - 05 Feb 2020
Cited by 1
Abstract
The negative impacts of fossil fuel on the environment should be replaced by clean and sustainable energy sources worldwide. Therefore, the use of biodiesel as a clean energy source is crucial. Biodiesel is produced from various natural resources through a transesterification process. Considering [...] Read more.
The negative impacts of fossil fuel on the environment should be replaced by clean and sustainable energy sources worldwide. Therefore, the use of biodiesel as a clean energy source is crucial. Biodiesel is produced from various natural resources through a transesterification process. Considering the importance of this topic, this study focuses on the assessment of oil properties of Thymelaea hirsuta and Echinops spinosus as primary sources for biodiesel production. The two investigated plants were collected from the Western Desert of Egypt. The results showed that the lignocellulosic content was about 57.3 and 79.8 g/100 g in E. spinosus and 59.1 and 82.8 g/100 g in T. hirsuta, respectively. The two investigated samples showed variable lipid contents (30.2–76.1%). The GC-MS fatty acid profile characterized seven FAs in E. spinosus and twelf FAs in T. hirsuta. The greatest CN was calculated in T. hirsuta (379.2) compared to the lowest in E. spinosus (229.9). Furthermore, the values of saponification number (SN) were 27.9 in E. spinosus and 16.07 in T. hirsuta. The value of higher heating value (HHV) was about 47.5 MJ/kg in E. spinosus and 48.3 MJ/kg in T. hirsuta. Meanwhile, T. hirsuta exhibited a higher induction period (IP) value (19.3 h) comparable to that of E. spinosus (4.3 h). The results revealed that both plants are potential sources for biodiesel production according to various international standards for biodiesel production, and this work appears to be one of the first reports regarding such wild xerophytic plants as promising new primary sources for biodiesel production in Egypt. Full article
Show Figures

Figure 1

Open AccessArticle
Alleviation of Salinity-Induced Oxidative Stress, Improvement in Growth, Physiology and Mineral Nutrition of Canola (Brassica napus L.) through Calcium-Fortified Composted Animal Manure
Sustainability 2020, 12(3), 846; https://doi.org/10.3390/su12030846 - 23 Jan 2020
Cited by 1
Abstract
Salinity stress is one of the serious restrictive issues for optimum crop production in arid to semi-arid areas. Application of organic amendments have shown positive effects on crop growth and yield under such scenario. The present study was conducted to estimate the potential [...] Read more.
Salinity stress is one of the serious restrictive issues for optimum crop production in arid to semi-arid areas. Application of organic amendments have shown positive effects on crop growth and yield under such scenario. The present study was conducted to estimate the potential of calcium-fortified composted animal manure (Ca-FCM) to enhance growth and yield of canola under saline soil conditions. Salt affected soils with various electrical conductivity (EC) levels (original 1.5, 5, and 10 dS m−1) were developed via spiking the soil with sodium chloride (NaCl) salt. The results reveal that soil salinity reduced the growth, physiological, yield, and nutritional parameters of canola. However, application of 3% calcium-fortified composted manure significantly enhanced the growth and yield parameters at all EC levels as compared to control. Plant physiological parameters such as photosynthetic rate, relative chlorophyll contents (SPAD value), and relative water content were also increased with the application of 3% Ca-FCM at all EC levels in comparison to control. Application of 3% Ca-FCM also mediated the antioxidant enzymes activities at all EC levels in comparison to control. Moreover, application of 3% Ca-FCM caused maximum increase in nitrogen, phosphorus, and potassium concentrations in shoot at all EC levels. Conversely, application of 3% Ca-FCM showed maximum decrease in Na+/K+ ratio in leaf up to 83.33%, 77.78%, and 71.43% at EC levels 1.5, 5, and 10 dS m−1, respectively, as compared to control. It was concluded that application of calcium-fortified composted animal manure (Ca-FCM) could be an efficient method for improving growth, yield, physiological, and nutritional parameters of canola through mediation of antioxidant defense machinery under saline soil conditions. Full article
Show Figures

Figure 1

Back to TopTop