sensors-logo

Journal Browser

Journal Browser

Special Issue "Microfluidic Sensors 2020"

A special issue of Sensors (ISSN 1424-8220).

Deadline for manuscript submissions: closed (15 October 2020).

Special Issue Editors

Dr. Navid Kashaninejad
Website
Guest Editor
Queensland Micro- and Nanotechnology Centre, Griffith University, 4111 Brisbane, Australia
Interests: microfluidics; biomicrofluidics; lab-on-a-chip; tumour-on-a-chip
Special Issues and Collections in MDPI journals
Dr. Md Nazmul Islam
Website
Guest Editor
Lecturer in Biochemistry, School of Health and Life Sciences, Teesside University, TS1 3BX, North Yorkshire, United Kingdom
Interests: electrochemical sensors; molecular diagnostics; environmental sensor; integrated microfluidics; nucleic acid bioengineering

Special Issue Information

Dear Colleagues,

The interdisciplinary field of microfluidics has attracted significant attention among various fields ranging from engineering to life sciences and chemistry. It is worth emphasising that to be categorised in the field of microfluidics, only the length scale of the compartment that handles the fluid needs to be in the microscale domain.

In general, all microfluidic systems are either sensors or actuators. This Special Issue seeks to showcase research articles and critical review papers on recent advances in design, fabrication and characterisation of microfluidic sensors for environmental, forensic, chemical and biomedical applications.

Summing up, we invite submissions of papers related, but not limited, to the following topics:

  • Microfluidic paper-based analytical devices (µPAD);
  • Droplet-based microfluidic sensing systems;
  • Optofluidic/magnetofluidic/electrokinetic sensors;
  • Microneedle-based sensors;
  • Wearable/flexible microfluidic sensors;
  • Microfluidic biosensors for immunophenotyping;
  • Lab-on-a-chip microfluidic platform integrated with smart detection platforms (e.g., electrochemical and optical readouts) and bioassays (e.g., immunoassays, nucleic acid analysis, cytometry).

Dr. Navid Kashaninejad
Dr. Md Nazmul Islam
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Sensors is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Microfluidic sensors
  • Microneedles
  • Wearable microfluidics
  • µPAD
  • Droplet-based sensors
  • Integrated point-of-care testing
  • Immunophenotyping

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Photoelectric Sensor for Fast and Low-Priced Determination of Bi- and Triphasic Segmented Slug Flow Parameters
Sensors 2020, 20(23), 6948; https://doi.org/10.3390/s20236948 - 04 Dec 2020
Cited by 1
Abstract
Applying multiphase systems in microreactors leads to an intensification of heat and mass transport. Critical aspects of the well-studied segmented slug-flow, such as bubble generation and pump control, can be automated, provided a robust sensor for the reliable determination of velocity, phase lengths, [...] Read more.
Applying multiphase systems in microreactors leads to an intensification of heat and mass transport. Critical aspects of the well-studied segmented slug-flow, such as bubble generation and pump control, can be automated, provided a robust sensor for the reliable determination of velocity, phase lengths, and phase ratio(s) is available. In this work, a fast and low-priced sensor is presented, based on two optical transmission sensors detecting flow characteristics noninvasively together with a microcontroller. The resulting signal is mainly due to refraction of the bubble-specific geometries as shown by a simulation of light paths. The high performance of the processing procedure, utilizing the derivative of the signal, is demonstrated for a bi- and triphasic slug flow. The error of <5% is entirely reasonable for the purpose envisaged. The sensor presented is very fast, robust, and inexpensive, thus enhancing the attractiveness of parallelized capillary reactors for industrial applications. Full article
(This article belongs to the Special Issue Microfluidic Sensors 2020)
Show Figures

Figure 1

Back to TopTop