E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "New Outstanding Results over Land from the SMOS Mission"

A special issue of Remote Sensing (ISSN 2072-4292).

Deadline for manuscript submissions: 31 May 2019

Special Issue Editors

Guest Editor
Dr. Amen Al-Yaari

INRA Bordeaux-Aquitaine, Villenave-d'Ornon, France
Website | E-Mail
Interests: soil moisture; microwave remote sensing; hydrology; vegetation water content; climate; agriculture
Guest Editor
Dr. Arnaud Mialon

CESBIO, Université de Toulouse, CNES/CNRS/IRD/UPS, Toulouse, France
Website | E-Mail
Interests: Soil moisture; remote sensing data; passive microwaves; radiative transfer; SMOS (Soil Moisture and Ocean Salinity) satellite mission

Special Issue Information

Dear Colleagues,

Surface soil moisture (the water content in the first centimeters of soil) is an essential climate variable that plays an important role in land–atmosphere interactions. Soil moisture is widely used in improving climate model predictions/projections, weather forecasting, drought monitoring, rainfall estimations, etc.

Monitoring surface soil moisture at a global scale has recently become possible thanks to microwave remote sensing. SMOS (Soil Moisture and Ocean Salinity) was the first dedicated soil moisture mission that has been in orbit for eight years. The SMOS satellite was launched by the European Space Agency (ESA) in 2009, carrying on board a radiometer in the L-band frequency with a spatial resolution of ~43 km. Since then, soil moisture and vegetation optical depth (VOD) have been retrieved from multi-angular brightness temperature observations relying mainly on a radiative transfer model. 

This is a dedicated Special Issue on SMOS. We welcome studies on all subjects that are related to the SMOS satellite and its products.

Potential topics include, but are not limited to, the following:

  • the improvements in the soil moisture/VOD retrieval algorithms;
  • the evaluation/validation of the SMOS soil moisture and VOD products;
  • SMOS synergy with other remote sensing observations or models simulations;
  • SMOS soil moisture/VOD applications for agriculture, hydrology, etc.

Dr. Amen Al-Yaari
Dr. Arnaud Mialon
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Remote Sensing is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • SMOS
  • Soil moisture
  • Validation
  • Application
  • Synergy

Published Papers (1 paper)

View options order results:
result details:
Displaying articles 1-1
Export citation of selected articles as:


Open AccessFeature PaperArticle The AQUI Soil Moisture Network for Satellite Microwave Remote Sensing Validation in South-Western France
Remote Sens. 2018, 10(11), 1839; https://doi.org/10.3390/rs10111839
Received: 3 October 2018 / Revised: 9 November 2018 / Accepted: 14 November 2018 / Published: 20 November 2018
PDF Full-text (3770 KB) | HTML Full-text | XML Full-text | Supplementary Files
Global soil moisture (SM) products are currently available thanks to microwave remote sensing techniques. Validation of these satellite-based SM products over different vegetation and climate conditions is a crucial step. INRA (National Institute of Agricultural Research) has set up the AQUI SM and [...] Read more.
Global soil moisture (SM) products are currently available thanks to microwave remote sensing techniques. Validation of these satellite-based SM products over different vegetation and climate conditions is a crucial step. INRA (National Institute of Agricultural Research) has set up the AQUI SM and soil temperature in situ network (composed of three main sites Bouron, Bilos, and Hermitage), over a flat area of dense pine forests, in South-Western France (the Bordeaux–Aquitaine region) to validate the Soil Moisture and Ocean salinity (SMOS) satellite SM products. SMOS was launched in 2009 by the European Space Agency (ESA). The aims of this study are to present the AQUI network and to evaluate the SMOS SM product (in the new SMOS-IC version) along with other microwave SM products such as the active ASCAT (Advanced Scatterometer) and the ESA combined (passive and active) CCI (Climate Change Initiative) SM retrievals. A first comparison, using Pearson correlation, Bias, RMSE (Root Mean Square Error), and Un biased RMSE (ubRMSE) scores, between the 0–5 cm AQUI network and ASCAT, CCI, and SMOS SM products was conducted. In general all the three products were able to reproduce the annual cycle of the AQUI in situ observations. CCI and ASCAT had best and similar correlations (R~0.72) over the Bouron and Bilos sites. All had comparable correlations over the Hermitage sites with overall average values of 0.74, 0.68, and 0.69 for CCI, SMOS-IC, and ASCAT, respectively. Considering anomalies, correlation values decreased for all products with best ability to capture day to day variations obtained by ASCAT. CCI (followed by SMOS-IC) had the best ubRMSE values (mostly < 0.04 m3/m3) over most of the stations. Although the region is highly impacted by radio frequency interferences, SMOS-IC followed correctly the in situ SM dynamics. All the three remotely-sensed SM products (except SMOS-IC over some stations) overestimated the AQUI in situ SM observations. These results demonstrate that the AQUI network is likely to be well-suited for satellite microwave remote sensing evaluations/validations. Full article
(This article belongs to the Special Issue New Outstanding Results over Land from the SMOS Mission)

Graphical abstract

Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top