Special Issue "Selected Papers from “SMAR 2015”"

A special issue of Polymers (ISSN 2073-4360).

Deadline for manuscript submissions: closed (31 March 2016).

Special Issue Editors

Prof. Dr. Alper Ilki
E-Mail Website
Guest Editor
Structural and Earthquake Engineering Laboratory, Civil Engineering Faculty, Istanbul Technical University, 34469 Maslak Istanbul, Turkey
Tel. + 90 212 285 3838 (office); Fax: + 90 212 285 3838
Interests: structural engineering; reinforced concrete structures; masonry structures; seismic retrofit with advanced materials; seismic performance assessment
Special Issues and Collections in MDPI journals
Prof. Dr. Masoud Motavalli
E-Mail Website
Guest Editor
Structural Engineering Laboratory, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
Tel. +41 58 765 4116
Interests: application of advanced materials (such as fiber-reinforced polymer composites and shape memory alloys in civil engineering); structural rehabilitation and repair; seismic retrofitting; large and full scale laboratory and field experiments
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

We are happy to announce the second collaboration between the Smart Monitoring, Assessment and Rehabilitation of Structures (SMAR) conference and Polymers. This Special Issue is for extended versions of the best papers from the SMAR 2015 conference (www.smar2015.org) in the field of rehabilitation of civil structures using fiber-reinforced polymer (FRP) composites. The topics include, but are not limited to:

  • External strengthening of concrete, timber, and steel structures using FRP composites
  • Strengthening of masonry and historic structures using FRP composites
  • Confinement of concrete columns using FRP composites
  • Near surface mounting reinforcement using FRP composites
  • Seismic Retrofitting using FRP composites
  • Durability issues of FRP strengthened structures as related to harsh environments
  • Fire protection systems for FRP strengthened structures
  • Practical applications and case studies.

Prof. Dr. Alper Ilki
Prof. Dr. Masoud Motavalli
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Related Special Issue “Selected Papers from SMAR 2013” can be found at: https://www.mdpi.com/journal/polymers/special_issues/SMAR-2013.

Keywords

  • FRP composites
  • external strengthening
  • structural rehabilitation
  • durability
  • fire protection systems
  • NSMR using FRP
  • seismic retrofitting

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Dynamic and Static Behavior of Hollow-Core FRP-Concrete-Steel and Reinforced Concrete Bridge Columns under Vehicle Collision
Polymers 2016, 8(12), 432; https://doi.org/10.3390/polym8120432 - 13 Dec 2016
Cited by 6
Abstract
This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS) columns and conventional reinforced concrete (RC) columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, [...] Read more.
This paper presents the difference in behavior between hollow-core fiber reinforced polymer-concrete-steel (HC-FCS) columns and conventional reinforced concrete (RC) columns under vehicle collision in terms of dynamic and static forces. The HC-FCS column consisted of an outer FRP tube, an inner steel tube, and a concrete shell sandwiched between the two tubes. The steel tube was hollow inside and embedded into the concrete footing with a length of 1.5 times the tube diameter while the FRP tube stopped at the top of footing. The RC column had a solid cross-section. The study was conducted through extensive finite element impact analyses using LS-DYNA software. Nine parameters were studied including the concrete material model, unconfined concrete compressive strength, material strain rate, column height-to-diameter ratio, column diameter, column top boundary condition, axial load level, vehicle velocity, and vehicle mass. Generally, the HC-FCS columns had lower dynamic forces and higher static forces than the RC columns when changing the values of the different parameters. During vehicle collision with either the RC or the HC-FCS columns, the imposed dynamic forces and their equivalent static forces were affected mainly by the vehicle velocity and vehicle mass. Full article
(This article belongs to the Special Issue Selected Papers from “SMAR 2015”)
Show Figures

Figure 1

Open AccessArticle
A Retrofit Theory to Prevent Fatigue Crack Initiation in Aging Riveted Bridges Using Carbon Fiber-Reinforced Polymer Materials
Polymers 2016, 8(8), 308; https://doi.org/10.3390/polym8080308 - 18 Aug 2016
Cited by 21
Abstract
Most research on fatigue strengthening of steel has focused on carbon fiber-reinforced polymer (CFRP) strengthening of steel members with existing cracks. However, in many practical cases, aging steel members do not yet have existing cracks but rather are nearing the end of their [...] Read more.
Most research on fatigue strengthening of steel has focused on carbon fiber-reinforced polymer (CFRP) strengthening of steel members with existing cracks. However, in many practical cases, aging steel members do not yet have existing cracks but rather are nearing the end of their designed fatigue life. Therefore, there is a need to develop a “proactive” retrofit solution that can prevent fatigue crack initiation in aging bridge members. Such a proactive retrofit approach can be applied to bridge members that have been identified to be deficient, based on structural standards, to enhance their safety margins by extending the design service life. This paper explains a proactive retrofit design approach based on constant life diagram (CLD) methodology. The CLD approach is a method that can take into account the combined effect of alternating and mean stress magnitudes to predict the high-cycle fatigue life of a material. To validate the retrofit model, a series of new fatigue tests on steel I-beams retrofitted by the non-prestressed un-bonded CFRP plates have been conducted. Furthermore, this paper attempts to provide a better understanding of the behavior of un-bonded retrofit (UR) and bonded retrofit (BR) systems. Retrofitting the steel beams using the UR system took less than half of the time that was needed for strengthening with the BR system. The results show that the non-prestressed un-bonded ultra-high modulus (UHM) CFRP plates can be effective in preventing fatigue crack initiation in steel members. Full article
(This article belongs to the Special Issue Selected Papers from “SMAR 2015”)
Show Figures

Graphical abstract

Open AccessArticle
Monotonic and Cyclic Bond Behavior of Deformed CFRP Bars in High Strength Concrete
Polymers 2016, 8(6), 211; https://doi.org/10.3390/polym8060211 - 31 May 2016
Cited by 5
Abstract
Composite reinforcing bars (rebars) that are used in concrete members with high performance (strength and durability) properties could have beneficial effects on the behavior of these members. This is especially vital when a building is constructed in an aggressive environment, for instance a [...] Read more.
Composite reinforcing bars (rebars) that are used in concrete members with high performance (strength and durability) properties could have beneficial effects on the behavior of these members. This is especially vital when a building is constructed in an aggressive environment, for instance a corrosive environment. Although tension capacity/weight (or volume) ratios in composite rebars (carbon fiber reinforced polymer (CFRP), glass fiber reinforced polymer (GFRP), etc.) are very high when compared to steel rebars, major weaknesses in concrete members reinforced with these composite rebars may be the potential consequences of relatively poor bonding capacity. This may even be more crucial when the member is subjected to cyclic loading. Although monotonic bond tests are available in the literature, only limited experimental studies exist on bond characteristics under cyclic loading conditions. In order to fill this gap and propose preliminary design recommendations, 10 specimens of 10-mm-diameter ribbed CFRP rebars embedded in specially designed high strength concrete (fc = 70 MPa) blocks were subjected to monotonic and cyclic pullout tests. The experimental results showed that cyclically loaded CFRP rebars had less bond strength than those companion specimens loaded monotonically. Full article
(This article belongs to the Special Issue Selected Papers from “SMAR 2015”)
Show Figures

Graphical abstract

Open AccessArticle
Quasi-Static Behavior of Palm-Based Elastomeric Polyurethane: For Strengthening Application of Structures under Impulsive Loadings
Polymers 2016, 8(5), 202; https://doi.org/10.3390/polym8050202 - 20 May 2016
Cited by 3
Abstract
In recent years, attention has been focused on elastomeric polymers as a potential retrofitting material considering their capability in contributing towards the impact resistance of various structural elements. A comprehensive understanding of the behavior and the morphology of this material are essential to [...] Read more.
In recent years, attention has been focused on elastomeric polymers as a potential retrofitting material considering their capability in contributing towards the impact resistance of various structural elements. A comprehensive understanding of the behavior and the morphology of this material are essential to propose an effective and feasible alternative to existing structural strengthening and retrofitting materials. This article presents the findings obtained from a series of experimental investigations to characterize the physical, mechanical, chemical and thermal behavior of eight types of palm-based polyurethane (PU) elastomers, which were synthesized from the reaction between palm kernel oil-based monoester polyol (PKO-p) and 4,4-diphenylmethane diisocyanate (MDI) with polyethylene glycol (PEG) as the plasticizer via pre-polymerization. Fourier transform infrared (FT-IR) spectroscopy analysis was conducted to examine the functional groups in PU systems. Mechanical and physical behavior was studied with focus on elongation, stresses, modulus, energy absorption and dissipation, and load dispersion capacities by conducting hardness, tensile, flexural, Izod impact, and differential scanning calorimetry tests. Experimental results suggest that the palm-based PU has positive effects as a strengthening and retrofitting material against dynamic impulsive loadings both in terms of energy absorption and dissipation, and load dispersion. In addition, among all PUs with different plasticizer contents, PU2 to PU8 (which contain 2% to 8% (w/w) PEG with respect to PKO-p content) show the best correlation with mechanical response under quasi-static conditions focusing on energy absorption and dissipation and load dispersion characteristics. Full article
(This article belongs to the Special Issue Selected Papers from “SMAR 2015”)
Show Figures

Graphical abstract

Review

Jump to: Research

Open AccessReview
Fiber Reinforced Polymer Strengthening of Structures by Near-Surface Mounting Method
Polymers 2016, 8(8), 298; https://doi.org/10.3390/polym8080298 - 11 Aug 2016
Cited by 11
Abstract
This paper provides a critical review of recent studies on strengthening of reinforced concrete and unreinforced masonry (URM) structures by fiber reinforced polymers (FRP) through near-surface mounting (NSM) method. The use of NSM-FRP has been on the rise, mainly due to composite materials’ [...] Read more.
This paper provides a critical review of recent studies on strengthening of reinforced concrete and unreinforced masonry (URM) structures by fiber reinforced polymers (FRP) through near-surface mounting (NSM) method. The use of NSM-FRP has been on the rise, mainly due to composite materials’ high strength and stiffness, non-corrosive nature and ease of installation. Experimental investigations presented in this review have confirmed the benefits associated with NSM-FRP for flexural and shear strengthening of RC and URM structures. The use of prestressing and anchorage systems to further improve NSM-FRP strain utilization and changes in failure modes has also been presented. Bond behavior of NSM-FRP-concrete or masonry interface, which is a key factor in increasing the load capacity of RC and URM structures has been briefly explored. Presented studies related to the effect of temperature on the bond performance of NSM-FRP strengthened systems with various insulations and adhesive types, show better performance than externally bonded reinforcement (EBR) FRP retrofitting. In summary, the presented literature review provides an insight into the ongoing research on the use of NSM-FRP for strengthening of structural members and the trends for future research in this area. Full article
(This article belongs to the Special Issue Selected Papers from “SMAR 2015”)
Show Figures

Graphical abstract

Back to TopTop