polymers-logo

Journal Browser

Journal Browser

Advances in Photopolymerization Process and Applications

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Chemistry".

Deadline for manuscript submissions: closed (25 April 2025) | Viewed by 2092

Special Issue Editors


E-Mail Website
Guest Editor
Department of Experimental Physics, Institute of Physics, Faculty of Science and Technology, University of Debrecen, H-4026 Debrecen, Hungary
Interests: nanoparticles; plasmonics; photonics; SERS
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biomaterials and Prosthetic Dentistry, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Hungary
Interests: photopolymerization; polymers; nanocomposites; dental application

Special Issue Information

Dear Colleagues,

Studying the photopolymerization process is important from the point of view of applications. The result of this process influences a lot of different parameters: type of monomers, photoinitiators, and their concentration; type of light sources, and their intensity, and irradiation wavelength; and other possible additives, which could enhance the properties of the polymer, such as different nanoparticles and nanostructures. The selection and optimization of such parameters have led to the advancement of the application of the photopolymerization process. Additionally, all these parameters influence the parameters of polymer nanocomposite: degree of conversion, mechanical properties, and other properties, which are important from the point of view of applications.

Dr. István Csarnovics
Dr. Melinda Szalóki
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • photopolymerization
  • degree of conversion
  • dental application
  • chemical application
  • pharmaceutical application
  • photoinitiators
  • light sources for photopolymerization
  • composites

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 3574 KiB  
Article
Preparation of Few-Micron-Thick Free-Standing Au-Nanorod/UDMA-TEGDMA Nanocomposite Films by Using PVA Sacrificial Layers
by Nóra Tarpataki, Andrea Keczánné-Üveges, Melinda Szalóki and Attila Bonyár
Polymers 2025, 17(10), 1391; https://doi.org/10.3390/polym17101391 - 19 May 2025
Abstract
A method to prepare free-standing, few-micron-thick films from a dental photopolymer resin, namely UDMA-TEGDMA in a 3:1 weight ratio, doped with gold nanorods, is presented. The method is based on a sandwich structure consisting of a 4 μm thick PVA sacrificial layer, the [...] Read more.
A method to prepare free-standing, few-micron-thick films from a dental photopolymer resin, namely UDMA-TEGDMA in a 3:1 weight ratio, doped with gold nanorods, is presented. The method is based on a sandwich structure consisting of a 4 μm thick PVA sacrificial layer, the Au-nanorod/UDMA-TEGDMA nanocomposite layer, and glycerol, all spin-coated sequentially onto a glass slide. Glycerol serves as a cover layer to shut out oxygen during photopolymerization, while the water-soluble PVA enables the subsequent detachment of the nanocomposite film by simple immersion into a liquid bath. Layer thicknesses were controlled by profilometry, while the presence of homogeneously dispersed gold nanorods was confirmed by optical spectroscopy and dark-field optical microscopy. A total of five similar spin-coating scenarios were tested, out of which two approaches produced positive results, with final nanocomposite layer thicknesses in the 2.5–4 μm range, which is smaller than the usual thickness of the oxygen inhibition layer (OIL) commonly present in these types of resins. Optimization of these technological processes and parameters to control film thickness and consistency is discussed in detail. Full article
(This article belongs to the Special Issue Advances in Photopolymerization Process and Applications)
Show Figures

Figure 1

15 pages, 4932 KiB  
Article
Thermally Stable UV-Curable Pressure-Sensitive Adhesives Based on Silicon–Acrylate Telomers and Selected Adhesion Promoters
by Agnieszka Kowalczyk, Krzysztof Kowalczyk, Jan Gruszecki, Tomasz J. Idzik and Jacek G. Sośnicki
Polymers 2024, 16(15), 2178; https://doi.org/10.3390/polym16152178 - 30 Jul 2024
Viewed by 1580
Abstract
A new type of UV-curable pressure-sensitive adhesive containing Si atoms (Si-PSAs) was prepared by a solution-free UV-initiated telomerization process of n-butyl acrylate, acrylic acid, methyl methacrylate, and 4-acrylooxybenzophenone using triethylsilane (TES) as a telogen and an acylphosphine oxide (APO) as a radical photoinitiator. [...] Read more.
A new type of UV-curable pressure-sensitive adhesive containing Si atoms (Si-PSAs) was prepared by a solution-free UV-initiated telomerization process of n-butyl acrylate, acrylic acid, methyl methacrylate, and 4-acrylooxybenzophenone using triethylsilane (TES) as a telogen and an acylphosphine oxide (APO) as a radical photoinitiator. Selected commercial adhesion promoters were tested as additives in the formulation of adhesive compositions, i.e., (i) an organic copolymer with polar groups (carboxyl and hydroxyl); (ii) a hydroxymetal-organic compound; and (iii) a quaternary ammonium salt and (iv) a chlorinated polyolefin. No fillers, crosslinking agents, or photoinitiators were used in the adhesive compositions. NMR techniques confirmed the incorporation of silicon atoms into the polyacrylate structure. The influence of adhesion promoters on the kinetics of the UV-crosslinking process of Si-PSAs was investigated by a photo-DSC technique. The obtained Si-PSAs were characterized by adhesion (to steel, glass, PMMA, and PE), tack, and cohesion at 20 °C. Finally, the wetting angle of Si-PSAs with water was checked and their thermal stability was proved (TGA). Unexpectedly, the quaternary ammonium salt had the most favorable effect on improving the thermal stability of Si-PSAs (302 °C) and adhesion to glass and PMMA. In contrast, Si-PSAs containing the hydroxymetal-organic compound showed excellent adhesion to steel. Full article
(This article belongs to the Special Issue Advances in Photopolymerization Process and Applications)
Show Figures

Figure 1

Back to TopTop