polymers-logo

Journal Browser

Journal Browser

Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Circular and Green Sustainable Polymer Science".

Deadline for manuscript submissions: 25 October 2025 | Viewed by 3304

Special Issue Editor


E-Mail Website
Guest Editor
Department of Engineering, University of Palermo, 90128 Palermo, Italy
Interests: structure/processing/properties relationships in polymers; biopolymers; micro- and nano- composites; polymers and biopolymers degradation and stabilization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The continuous increase in the production and use of numerous plastic goods requires an adequate design of material end-of-life that considers appropriate polymer recycling. The advances in polymer recycling are related to the following two main points: first, adequate polymer separation, and second, property and performance optimization of second-life recyclates. There are also other important issues related to polymer compatibility and/or incompatibility, the impact of numerous additives on the recycling process and the adding of further additives to second-life recyclates, which aim to improve the properties and performance.

Therefore, to further the implementation and development of an efficient polymer material recovery process, i.e., recycling of polymers, specific attention and inputs from both academic and industrial parties are required; notably, some industries in the EU are already carrying out efficient recycling processes.

Dr. Nadka T. Dintcheva
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • structure/processing/property relationships in polymers
  • biopolymers
  • micro- and nano-composites
  • polymer and biopolymer degradation and stabilization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 3006 KiB  
Article
Evaluation of Thermal Aging Susceptibility of Recycled Waste Plastic Aggregates (Low-Density Polyethylene, High-Density Polyethylene, and Polypropylene) in Recycled Asphalt Pavement Mixtures
by Yeong-Min Kim and Kyungnam Kim
Polymers 2025, 17(6), 731; https://doi.org/10.3390/polym17060731 - 10 Mar 2025
Viewed by 594
Abstract
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and [...] Read more.
The increasing demand for sustainable road construction materials necessitates innovative solutions to overcome the challenges of Recycled Asphalt Pavement (RAP), including aged binder brittleness, reduced flexibility, and durability concerns. Waste Plastic Aggregates (WPA) offer a promising alternative; however, their thermal aging behavior and interactions with RAP remain insufficiently understood. This study evaluates the performance of RAP-based asphalt mixtures, incorporating three types of WPA—Low-Density Polyethylene (LDPE), High-Density Polyethylene (HDPE), and Polypropylene (PP)—under three thermal aging conditions: mild (60 °C for 7 days), moderate (80 °C for 14 days), and severe (100 °C for 30 days). The mixtures were designed with 30% RAP content, 10% and 20% WPA by aggregate weight, and SBS-modified binder rejuvenated with 2% and 4% sewage sludge bio-oil by binder weight. It is considered that thermal aging may impact the performance of WPA in RAP mixtures; therefore, this study evaluates the durability and mechanical properties of RAP mixtures incorporating LDPE, HDPE, and PP under varying thermal aging conditions to address these challenges. The results showed that incorporating WPA and bio-oil significantly enhanced the mechanical performance, durability, and sustainability of asphalt mixtures. Marshall Stability increased by 12–23%, with values ranging from 12.6 to 13.2 kN for WPA-enhanced mixtures compared to 12.7 kN for the control. ITS improved by 15–20% in dry conditions (1.34–1.44 MPa) and 12–18% in wet conditions (1.15–1.19 MPa), with TSR values reaching up to 82.64%. Fatigue life was extended by 28–43%, with load cycles increasing from 295,600 for the control to 352,310 for PP mixtures. High-temperature performance showed a 12–18% improvement in softening point (57.3 °C to 61.2 °C) and a 23% increase in rutting resistance, with rut depths decreasing from 7.1 mm for the control to 5.45 mm for PP mixtures after 20,000 passes. These results demonstrate that combining RAP, WPA, and bio-oil produces sustainable asphalt mixtures with superior performance under aging and environmental stressors, offering robust solutions for high-demand applications in modern infrastructure. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

14 pages, 5184 KiB  
Article
Sustainable Composites from Waste Polypropylene Added with Thermoset Composite Waste or Recovered Carbon Fibres
by Ehsan Zolfaghari, Giulia Infurna, Sabina Alessi, Clelia Dispenza and Nadka Tz. Dintcheva
Polymers 2024, 16(20), 2922; https://doi.org/10.3390/polym16202922 - 18 Oct 2024
Cited by 1 | Viewed by 1272
Abstract
In order to limit the ever-increasing consumption of new resources for material formulations, regulations and legislation require us to move from a linear to a circular economy and to find efficient ways to recycle, reuse and recover materials. Taking into account the principles [...] Read more.
In order to limit the ever-increasing consumption of new resources for material formulations, regulations and legislation require us to move from a linear to a circular economy and to find efficient ways to recycle, reuse and recover materials. Taking into account the principles of material circularity and waste reuse, this research study aims to produce thermoplastic composites using two types of industrial waste from neighbouring companies, namely waste polypropylene (wPP) from household production and carbon-fibre-reinforced epoxy composite scrap from a pultrusion company. The industrial scrap of the carbon-fibre-reinforced epoxy composites was either machined/ground to powder (pCFRC) and used directly as a reinforcement agent or subjected to a chemical digestion process to recover the carbon fibres (rCFs). Both pCFRC and rCF, at different weight ratios, were melt-blended with wPP. Prior to melt blending, both pCFRC and rCF were analysed for morphology by scanning electron microscopy (SEM). The pCFRC powder contains epoxy resin fragments with spherical to ellipsoidal shape and carbon fibre fragments. The rCFs are clean from the matrix, but they are slightly thicker and corrugated after the matrix digestion. Further, the morphologies of wPP/pCFRC and wPP/rCF were also investigated by SEM, while the thermal behaviour, i.e., transitions and changes in crystallinity, and thermal resistance were evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), respectively. The strength of the interaction between the filler (i.e., pCFRC or rCF) and the wPP matrix and the processability of these composites were assessed by rheological studies. Finally, the mechanical properties of the systems were characterised by tensile tests, and as found, both pCFRC and rCF exert reinforcement effects, although better results were obtained using rCF. The wPP/pCFRC results are more heterogeneous than those of the wPP/rCF due to the presence of epoxy and carbon fibre fragments, and this heterogeneity could be considered responsible for the mechanical behaviour. Further, the presence of both pCFRC and rCF leads to a restriction of polymer chain mobility, which leads to an overall reduction in ductility. All the results obtained suggest that both pCFRC and rCF are good candidates as reinforcing fillers for wPP and that these complex systems could potentially be processed by injection or compression moulding. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

15 pages, 11438 KiB  
Article
Investigation on Erosion Resistance in Polyester–Jute Composites with Red Mud Particulate: Impact of Fibre Treatment and Particulate Addition
by Sundarakannan Rajendran, Vigneshwaran Shanmugam, Geetha Palani, Uthayakumar Marimuthu, Arumugaprabu Veerasimman, Kinga Korniejenko, Inna Oliinyk, Herri Trilaksana and Vickram Sundaram
Polymers 2024, 16(19), 2793; https://doi.org/10.3390/polym16192793 - 1 Oct 2024
Cited by 11 | Viewed by 1119
Abstract
This research investigates the manufacturing and characterisation of polyester-based composites reinforced with jute fibres and red mud particulates. The motivation stems from the need for sustainable, high-performance materials for applications in industries, like aerospace and automotive, where resistance to erosion is critical. Jute, [...] Read more.
This research investigates the manufacturing and characterisation of polyester-based composites reinforced with jute fibres and red mud particulates. The motivation stems from the need for sustainable, high-performance materials for applications in industries, like aerospace and automotive, where resistance to erosion is critical. Jute, a renewable fibre, combined with red mud, an industrial byproduct, offers an eco-friendly alternative to conventional composites. The composites were fabricated using compression moulding with varying red mud contents (10, 20, and 30 wt.%) and a fixed 40 wt.% of jute fibre. Fibre treatments included sodium hydroxide (NaOH) and silane treatments to improve bonding and performance. Erosion tests were performed using an air-jet erosion tester, examining the effects of the red mud content, fibre treatment, and impact angles. Scanning Electron Microscope (SEM) analysis provided insights into the erosion mechanisms. A distinctive reduction in erosion rates at higher impact angles (30°–60°) was observed, attributed to the semi-ductile nature of the composites. The addition of red mud enhanced erosion resistance, although an excess of 30 wt.% reduced resistance due to poor surface bonding. Silane-treated composites showed the lowest erosion rates. This study provides new insights into the interplay among material composition, fibre treatment, and erosion dynamics, contributing to the development of optimised, eco-friendly composite materials. Full article
(This article belongs to the Special Issue Progress in Recycling of (Bio)Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

Back to TopTop