Hydrogen-Based Strategies in Plant Science: From Molecular Mechanisms to Agricultural Applications

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Molecular Biology".

Deadline for manuscript submissions: 1 February 2026 | Viewed by 290

Special Issue Editors


E-Mail Website
Guest Editor
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
Interests: physiological functions and potential applications of gasotransmitters in plants
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
Interests: abiotic stress; signal transduction; calcium signaling; nitric oxide; hydrogen peroxide; cut flowers; adventitious root development; protein S-nitrosylation; oxidative stress
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Hydrogen gas has emerged as a potential gasotransmitter, influencing plant development and enabling plants to cope with various stresses, as well as improving their use in the food industry and packaging. Harnessing hydrogen’s bioactive roles can influence crop growth and development, aid in agro-food technologies, and enhance plants’ environmental resilience. Significant functional challenges persist, however, in areas such as such as hydrogen metabolism, modulating endogenous hydrogen levels (chemical donor or genetic manipulation), and transitions from model systems to crops. This Plants Special Issue aims to illuminate hydrogen’s biosynthesis, physiological roles, and ecological interactions, encompassing molecular discoveries and agricultural innovations for sustainable plant–environment synergies.

Prof. Dr. Wenbiao Shen
Prof. Dr. Weibiao Liao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrogen
  • molecular mechanisms
  • metabolism
  • function
  • agriculture
  • application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 10222 KiB  
Article
Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming
by Longna Li, Jiaxin Gong, Ke Jiang, Liqin Huang, Lijun Gan, Yan Zeng, Xu Cheng, Didier Pathier and Wenbiao Shen
Plants 2025, 14(14), 2137; https://doi.org/10.3390/plants14142137 - 10 Jul 2025
Viewed by 196
Abstract
Fruit yield and quality improvement are challenges for researchers and farmers. This study reveals that the main fruit traits of blueberry (Vaccinium ashei ‘Bluegem’) were significantly improved after hydrogen (H2)-based irrigation, assessed by the increased single fruit weight (14.59 ± [...] Read more.
Fruit yield and quality improvement are challenges for researchers and farmers. This study reveals that the main fruit traits of blueberry (Vaccinium ashei ‘Bluegem’) were significantly improved after hydrogen (H2)-based irrigation, assessed by the increased single fruit weight (14.59 ± 6.66%) and fruit equatorial diameter (4.19 ± 2.39%), decreased titratable acidity, increased solid–acid and sugar–acid ratios. The enhancement of fruit quality was confirmed by the increased total volatiles, vitamin C contents, and antioxidant capacity. Using weighted protein co-expression network analysis (WPCNA), proteomic interrogation revealed that serine carboxypeptidase-like proteins I/II (SCPLI/II), ADP ribosylation factor 1/2 (ARF1/2), and UDP-glucosyltransferase 85A (UGT85A) might be functionally associated with the increased fruit weight and size driven by H2. Reduced organic acid accumulation was caused by the regulation of the specific enzymes involved in sucrose metabolism (e.g., α-amylase, endoglucanase, β-glucosidase, etc.). H2 regulation of fatty acid degradation (e.g., acyl CoA oxidase 1 (ACX1), acetyl CoA acyltransferase 1 (ACAA1), etc.) and phenylpropanoid metabolism were used to explain the improved fruit aroma and anthocyanin accumulation. Meanwhile, the upregulated heat shock protein 20/70 matched with the enhanced antioxidant activity. Together, this study provides a novel approach for yield and quality improvement in horticultural crops. Full article
Show Figures

Figure 1

Back to TopTop