Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming
Abstract
1. Introduction
2. Results
2.1. H2-Based Irrigation Improves Blueberry Fruit Size and Weight
2.2. Effects of H2-Based Irrigation on Blueberry Flavor Quality
2.3. Antioxidant Capacity of Blueberries Is Enhanced by H2-Based Irrigation
2.4. PLS-DA Analysis of Quality Characteristics in Blueberry Fruits After H2-Based Irrigation
2.5. Protein Changes in Response to H2-Based Irrigation
2.6. Identification of Proteins That Correlated Most with Main Fruit Traits
2.7. Validation of Protein Profiles by qPCR
3. Discussion
3.1. The Genes/Proteins for the H2-Enhanced Blueberry Fruit Size and Weight
3.2. H2-Reduced Organic Acids Accumulation Possibly by Regulating Sugar Metabolism
3.3. H2-Based Irrigation Regulates Fatty Acid Metabolism to Influence Fruit Aroma Formation
3.4. The Reprogramming of Phenylpropanoid Metabolism by H2-Based Irrigation to Improve Anthocyanins Accumulation
3.5. Stress Response Proteins Involved in HNW-Enhanced Antioxidant Ability
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.2. The Preparation of Hydrogen Nanobubble Nutrient Solution
4.3. Measurement of Fruit Phenotypic Traits
4.4. Extraction and Analyses of Flavor Characteristics
4.5. Determination of Total Phenolic, Total Anthocyanin, and Vitamin C Contents
4.6. Assay of Antioxidant Enzyme Activity, ABTS·+ and DPPH· Scavenging Activity
4.7. Protein Extraction and Proteomic Analysis
4.8. Quantitative Real-Time PCR
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Wei, X.; Liu, J.; Hao, J.; Chen, L.; Sun, H. Development Report of 2024 China Blueberry Industry. J. Jilin Agric. Univ. 2025, 47, 1–14. [Google Scholar]
- Wu, Y.; Yang, H.; Huang, Z.; Lyu, L.; Wu, W.; Li, W. Effect of Shade Strength on the Fruit Quality of Different Blueberry Cultivars. J. Soil Sci. Plant Nutr. 2023, 23, 4127–4140. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Gbadamosi, A.O.; Epelle, E.I.; Abdulrasheed, A.A.; Haq, B.; Patil, S.; Al-Shehri, D.; Kamal, M.S. Hydrogen Production, Transportation, Utilization, and Storage: Recent Advances Towards Sustainable Energy. J. Energy Storage 2023, 73, 109207. [Google Scholar] [CrossRef]
- Johnsen, H.M.; Hiorth, M.; Klaveness, J. Molecular Hydrogen Therapy—A Review on Clinical Studies and Outcomes. Molecules 2023, 28, 7785. [Google Scholar] [CrossRef]
- Gaffron, H.; Rubin, J. Fermentative and Photochemical Production of Hydrogen in Algae. J. Gen. Physiol. 1942, 26, 219–240. [Google Scholar] [CrossRef]
- Czerkawski, J.W. Fate of Metabolic Hydrogen in the Rumen. Proc. Nutr. Soc. 1972, 31, 141–146. [Google Scholar] [CrossRef]
- Renwick, G.M.; Giumarro, C.; Siegel, S.M. Hydrogen Metabolism in Higher Plants. Plant Physiol. 1964, 39, 303–306. [Google Scholar] [CrossRef]
- Xie, Y.; Mao, Y.; Lai, D.; Zhang, W.; Shen, W.; Blazquez, M.A. H2 Enhances Arabidopsis Salt Tolerance by Manipulating Zat10/12-Mediated Antioxidant Defence and Controlling Sodium Exclusion. PLoS ONE 2012, 7, e49800. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, M.; Sun, X. Molecular Hydrogen Is Involved in Phytohormone Signaling and Stress Responses in Plants. PLoS ONE 2013, 8, e71038. [Google Scholar] [CrossRef]
- Zhu, Y.; Liao, W. A Positive Role for Hydrogen Gas in Adventitious Root Development. Plant Signal. Behav. 2016, 11, e1187359. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Zhang, X.; Feng, C.; Zhang, S.; Song, L.; Qi, J. Exogenous Hydrogen Promotes Germination and Seedling Establishment of Barley Under Drought Stress by Mediating the ASA-GSH Cycle and Sugar Metabolism. J. Plant Growth Regul. 2023, 42, 2749–2762. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Ni, S.; Xing, B.; Cheng, K.; Peng, X. Transcriptome and Metabonomics Combined Analysis Revealed the Defense Mechanism Involved in Hydrogen-Rich Water-Regulated Cold Stress Response of Tetrastigma hemsleyanum. Front. Plant Sci. 2022, 13, 889726. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Yao, P.; Pan, J.; Dai, C.; Cao, H.; Chen, Z.; Zhang, S.; Xu, S.; Shen, W. Transcriptome Analysis Reveals Insight into Molecular Hydrogen-Induced Cadmium Tolerance in Alfalfa: The Prominent Role of Sulfur and (Homo)glutathione Metabolism. BMC Plant Biol. 2020, 20, 58. [Google Scholar] [CrossRef]
- Wang, R.; Yang, X.; Chen, X.; Zhang, X.; Chi, Y.; Zhang, D.; Chu, S.; Zhou, P. A Critical Review for Hydrogen Application in Agriculture: Recent Advances and Perspectives. Crit. Rev. Environ. Sci. Technol. 2024, 54, 222–238. [Google Scholar] [CrossRef]
- Zhao, L.; Teng, M.; Zhou, L.; Li, Y.; Sun, J.; Zhang, Z.; Wu, F. Hydrogen Nanobubble Water: A Good Assistant for Improving the Water Environment and Agricultural Production. J. Agric. Food Chem. 2023, 71, 12369–12371. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, J.; Zhao, Z.; Kong, L.; Lou, W.; Zhang, T.; Jing, D.; Yu, J.; Shu, Z.; Huang, L.; et al. Molecular Hydrogen Increases Quantitative and Qualitative Traits of Rice Grain in Field Trials. Plants 2021, 10, 2331. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, G.; Yang, E.; Li, L.; Zeng, Y.; Cheng, X.; Pathier, D.; Xu, G.; Shen, W. Hydrogen-Based Irrigation Increases Yield and Improves Quality of Chinese Cabbage by Enhancing Nutrient Composition and Antioxidant Capabilities. Hortic. Environ. Biotechnol. 2024, 65, 593–605. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Jiang, K.; Kuang, Y.; Zeng, Y.; Cheng, X.; Liu, Y.; Wang, S.; Shen, W. Preharvest Application of Hydrogen Nanobubble Water Enhances Strawberry Flavor and Consumer Preferences. Food Chem. 2022, 377, 131953. [Google Scholar] [CrossRef]
- Li, M.; Zhu, G.; Liu, Z.; Li, L.; Wang, S.; Liu, Y.; Lu, W.; Zeng, Y.; Cheng, X.; Shen, W. Hydrogen Fertilization with Hydrogen Nanobubble Water Improves Yield and Quality of Cherry Tomatoes Compared to the Conventional Fertilizers. Plants 2024, 13, 443. [Google Scholar] [CrossRef]
- Li, Y.; Fan, C.; Xing, Y.; Jiang, Y.; Luo, L.; Sun, L.; Shao, D.; Xu, C.; Li, X.; Xiao, J.; et al. Natural Variation in GS5 Plays an Important Role in Regulating Grain Size and Yield in Rice. Nat. Genet. 2011, 43, 1266–1269. [Google Scholar] [CrossRef] [PubMed]
- Lehfeldt, C.; Shirley, A.M.; Meyer, K.; Ruegger, M.O.; Cusumano, J.C.; Viitanen, P.V.; Strack, D.; Chapple, C. Cloning of the SNG1 Gene of Arabidopsis Reveals a Role for a Serine Carboxypeptidase-like Protein as an Acyltransferase in Secondary Metabolism. Plant Cell 2000, 12, 1295–1306. [Google Scholar] [CrossRef] [PubMed]
- Degan, F.D.; Rocher, A.; Cameron-Mills, V.; Wettstein, D.V. The Expression of Serine Carboxypeptidases during Maturation and Germination of the Barley Grain. Proc. Natl. Acad. Sci. USA 1994, 91, 8209–8213. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Gao, J.; Mu, J.; Duan, L.; Gu, Y.; Han, S.; Chen, L.; Li, Y.; Yan, Y.; Li, X. Interaction between Serine Carboxypeptidase-Like Protein TtGS5 and Annexin D1 in Developing Seeds of Triticum timopheevi. J. Appl. Genet. 2020, 61, 151–162. [Google Scholar] [CrossRef]
- Min, M.K.; Jang, M.; Lee, M.; Lee, J.; Song, K.; Lee, Y.; Choi, K.Y.; Robinson, D.G.; Hwang, I. Recruitment of Arf1-GDP to Golgi by Glo3p-Type ArfGAPs Is Crucial for Golgi Maintenance and Plant Growth. Plant Physiol. 2013, 161, 676–691. [Google Scholar] [CrossRef]
- Yuan, J.; Song, J.; Ma, H.; Song, X.; Wei, H.; Liu, Y. Ectopic Expression a Maize ADP-Ribosylation Factor Gene in Arabidopsis, Increase Plant Size and Growth Rate. J. Plant Biochem. Biotechnol. 2015, 24, 161–166. [Google Scholar] [CrossRef]
- Wang, Q.; Xue, X.; Li, Y.; Dong, Y.; Zhang, L.; Zhou, Q.; Deng, F.; Ma, Z.; Qiao, D.; Hu, C.; et al. A Maize ADP-Ribosylation Factor ZmArf2 Increases Organ and Seed Size by Promoting Cell Expansion in Arabidopsis. Physiol Plant. 2016, 156, 97–107. [Google Scholar] [CrossRef]
- Lu, X.; Huang, L.; Scheller, H.V.; Keasling, J.D. Medicinal Terpenoid UDP-Glycosyltransferases in Plants: Recent Advances and Research Strategies. J. Exp. Bot. 2023, 74, 1343–1357. [Google Scholar] [CrossRef]
- Woo, H.; Jeong, B.R.; Hirsch, A.M.; Hawes, M.C. Characterization of Arabidopsis AtUGT85A and AtGUS Gene Families and their Expression in Rapidly Dividing Tissues. Genomics 2007, 90, 143–153. [Google Scholar] [CrossRef]
- Hu, G.; Yue, X.; Song, J.; Xing, G.; Chen, J.; Wang, H.; Su, N.; Cui, J. Calcium Positively Mediates Blue Light-Induced Anthocyanin Accumulation in Hypocotyl of Soybean Sprouts. Front. Plant Sci. 2021, 12, 662091. [Google Scholar] [CrossRef]
- Zhang, X.; Su, N.; Jia, L.; Tian, J.; Li, H.; Huang, L.; Shen, Z.; Cui, J. Transcriptome Analysis of Radish Sprouts Hypocotyls Reveals the Regulatory Role of Hydrogen-Rich Water in Anthocyanin Biosynthesis Under UV-A. BMC Plant Biol. 2018, 18, 227. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Yu, H. Integrated Metabolomic and Transcriptomic Analyses to Understand the Effects of Hydrogen Water on the Roots of Ficus Hirta Vahl. Plants 2022, 11, 602. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Jiang, W.; Han, W.; Li, J.; Liu, Y. Effects of Hydrogen-Rich Water on Fitness Parameters of Rice Plants. Agron. J. 2017, 109, 2033–2039. [Google Scholar] [CrossRef]
- Hancock, J.T.; LeBaron, T.W.; May, J.; Thomas, A.; Russell, G. Molecular Hydrogen: Is This a Viable New Treatment for Plants in the UK? Plants 2021, 10, 2270. [Google Scholar] [CrossRef]
- Wang, C.; Fang, H.; Gong, T.; Zhang, J.; Niu, L.; Huang, D.; Huo, J.; Liao, W. Hydrogen Gas Alleviates Postharvest Senescence of Cut Rose ‘Movie Star’ by Antagonizing Ethylene. Plant Mol. Biol. 2020, 102, 271–285. [Google Scholar] [CrossRef]
- Li, L.; Huang, H.; Jin, Z.; Jiang, K.; Zeng, Y.; Pathier, D.; Cheng, X.; Shen, W. Strawberry Yield Improvement by Hydrogen-Based Irrigation is Functionally Linked to Altered Rhizosphere Microbial Communities. Plants 2024, 13, 1723. [Google Scholar] [CrossRef]
- Alwazeer, D.; Hancock, J.T.; Russell, G.; Stratakos, A.C.; Li, L.; Çiğdem, A.; Engin, T.; LeBaron, T.W. Molecular Hydrogen: A Sustainable Strategy for Agricultural and Food Production Challenges. Front. Food Sci. Technol. 2024, 4, 1448148. [Google Scholar] [CrossRef]
- Wen, J.; Li, J.; Walker, J.C. Overexpression of a Serine Carboxypeptidase Increases Carpel Number and Seed Production in Arabidopsis thaliana. Food Energy Secur. 2012, 1, 61–69. [Google Scholar] [CrossRef]
- Lehmann, M.M.; Ghiasi, S.; George, G.M.; Cormier, M.; Gessler, A.; Saurer, M.; Werner, R.A. Influence of Starch Deficiency on Photosynthetic and Post-Photosynthetic Carbon Isotope Fractionations. J. Exp. Bot. 2019, 70, 1829–1841. [Google Scholar] [CrossRef]
- Brocker, C.; Vasiliou, M.; Carpenter, S.; Carpenter, C.; Zhang, Y.; Wang, X.; Kotchoni, S.O.; Wood, A.J.; Kirch, H.; Kopečný, D.; et al. Aldehyde Dehydrogenase (ALDH) Superfamily in Plants: Gene Nomenclature and Comparative Genomics. Planta 2013, 237, 189–210. [Google Scholar] [CrossRef]
- Strommer, J. The Plant ADH Gene Family. Plant J. 2011, 66, 128–142. [Google Scholar] [CrossRef] [PubMed]
- El Hadi, M.A.; Zhang, F.J.; Wu, F.F.; Zhou, C.H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Moummou, H.; Tonfack, L.B.; Chervin, C.; Benichou, M.; Youmbi, E.; Ginies, C.; Latche, A.; Pech, J.; van der Rest, B. Functional Characterization of SlscADH1, A Fruit-Ripening-Associated Short-Chain Alcohol Dehydrogenase of Tomato. J. Plant Physiol. 2012, 169, 1435–1444. [Google Scholar] [CrossRef] [PubMed]
- Hooks, M.A.; Kellas, F.; Graham, I.A. Long-Chain Acyl-CoA Oxidases of Arabidopsis. Plant J. 1999, 20, 1–13. [Google Scholar] [CrossRef]
- Kunau, W.H.; Dommes, V.; Schulz, H. β-Oxidation of Fatty Acids in Mitochondria, Peroxisomes, and Bacteria: A Century of Continued Progress. Prog. Lipid Res. 1995, 34, 267–342. [Google Scholar] [CrossRef]
- Xi, W.P.; Zhang, B.; Liang, L.; Shen, J.Y.; Wei, W.W.; Xu, C.J.; Allan, A.C.; Ferguson, I.B.; Chen, K.S. Postharvest Temperature Influences Volatile Lactone Production via Regulation of Acyl-CoA Oxidases in Peach Fruit. Plant Cell Environ. 2012, 35, 534–545. [Google Scholar] [CrossRef]
- Ferrao, L.F.V.; Johnson, T.S.; Benevenuto, J.; Edger, P.P.; Colquhoun, T.A.; Munoz, P.R. Genome-Wide Association of Volatiles Reveals Candidate Loci for Blueberry Flavor. New Phytol. 2020, 226, 1725–1737. [Google Scholar] [CrossRef]
- Graham, I.A.; Eastmond, P.J. Pathways of Straight and Branched Chain Fatty Acid Catabolism in Higher Plants. Prog. Lipid Res. 2002, 41, 156–181. [Google Scholar] [CrossRef]
- Sun, C.; Fang, S.; Shang, X. Triterpenoids Biosynthesis Regulation for Leaf Coloring of Wheel Wingnut (Cyclocarya paliurus). Forests 2021, 12, 1733. [Google Scholar] [CrossRef]
- Dong, N.; Lin, H. Contribution of Phenylpropanoid Metabolism to Plant Development and Plant-Environment Interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef]
- Hoffmann, T.; Kurtzer, R.; Skowranek, K.; Kiessling, P.; Fridman, E.; Pichersky, E.; Schwab, W. Metabolic Engineering in Strawberry Fruit Uncovers a Dormant Biosynthetic Pathway. Metab. Eng. 2011, 13, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Zuker, A.; Tzfira, T.; Ben-Meir, H.; Ovadis, M.; Shklarman, E.; Itzhaki, H.; Forkmann, G.; Martens, S.; Neta-Sharir, I.; Weiss, D.; et al. Modification of Flower Color and Fragrance by Antisense Suppression of the Flavanone 3-Hydroxylase Gene. Mol. Breed. 2002, 9, 33–41. [Google Scholar] [CrossRef]
- Jin, Z.; Huang, H.; Huang, H.; Li, L.; Zeng, Y.; Cheng, X.; Pathier, D.; Gan, L.; Shen, W. The Delayed Senescence in Harvested Blueberry by Hydrogen-Based Irrigation is Functionally Linked to Metabolic Reprogramming and Antioxidant Machinery. Food Chem. 2024, 453, 139563. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Belenghi, B.; Damari-Weisler, H.; Granot, D. Vesicle-Associated Membrane Protein of Arabidopsis Suppresses Bax-Induced Apoptosis in Yeast Downstream of Oxidative Burst. J. Biol. Chem. 2001, 276, 46284–46289. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Kwon, C.; Neu, C.; Pajonk, S.; Yun, H.S.; Lipka, U.; Humphry, M.; Bau, S.; Straus, M.; Kwaaitaal, M.; Rampelt, H.; et al. Co-Option of a Default Secretory Pathway for Plant Immune Responses. Nature 2008, 451, 810–835. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Zhang, H.; Wang, H.; Wei, T.; Che, S.; Zhang, L.; Hu, B.; Long, H.; Song, W.; et al. Identification of MsHsp20 Gene Family in Malus sieversii and Functional Characterization of MsHsp 16.9 in Heat Tolerance. Front. Plant Sci. 2017, 8, 1761. [Google Scholar] [CrossRef]
- de Souza, V.R.; Pereira, P.A.P.; Silva, T.L.T.D.; de Oliveira Lima, L.C.; Pio, R.; Queiroz, F. Determination of the Bioactive Compounds, Antioxidant Activity and Chemical Composition of Brazilian Blackberry, Red Raspberry, Strawberry, Blueberry and Sweet Cherry Fruits. Food Chem. 2014, 156, 362–368. [Google Scholar] [CrossRef]
- Perin, E.C.; Messias, R.D.S.; Borowski, J.M.; Crizel, R.L.; Schott, I.B.; Carvalho, I.R.; Rombaldi, C.V.; Galli, V. ABA-Dependent Salt and Drought Stress Improve Strawberry Fruit Quality. Food Chem. 2019, 271, 516–526. [Google Scholar] [CrossRef]
- Cakmak, I.; Marschner, H. Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide-Dismutase, Ascorbate Peroxidase, and Glutathione-Reductase in Bean-Leaves. Plant Physiol. 1992, 98, 1222–1227. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, Y.; Laura, T.; Liang, X.; Ye, H.; Zeng, X. Determination of Polyphenolic Content and Antioxidant Activity of Kudingcha Made from Ilex kudingcha C.J. Tseng. Food Chem. 2009, 112, 35–41. [Google Scholar] [CrossRef]
- Wang, F.; Ge, S.; Xu, X.; Xing, Y.; Du, X.; Zhang, X.; Lv, M.; Liu, J.; Zhu, Z.; Jiang, Y. Multiomics Analysis Reveals New Insights into the Apple Fruit Quality Decline Under High Nitrogen Conditions. J. Agric. Food Chem. 2021, 69, 5559–5572. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Hulse-Kemp, A.M.; Babiker, E.; Staton, M. High-Quality Reference Genome and Annotation Aids Understanding of Berry Development for Evergreen Blueberry (Vaccinium darrowii). Hortic. Res. 2021, 8, 228. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Treatment | SSC (%) | TSS (%) | TA (%) | SSC/TA | TSS/TA |
---|---|---|---|---|---|
SW | 11.57 ± 0.72 | 10.82 ± 0.71 | 0.48 ± 0.09 | 24.62 ± 2.95 | 23.06 ± 3.31 |
HNW | 12.54 ± 0.21 | 11.2 ± 1.47 | 0.36 ± 0.02 * | 34.57 ± 1.78 ** | 30.75 ± 3.14 * |
Module | ID | NCBI Accession No. | Regulated | Annotation |
---|---|---|---|---|
MEgreen | 278 | KAH7834522.1 | up | Serine carboxypeptidase-like clade I |
1792 | KAH7845398.1 | up | Serine carboxypeptidase-like clade II | |
1810 | KAH7845536.1 | up | UDP-glucosyltransferase 85A | |
3005 | KAH7854533.1 | up | ADP-ribosylation factor 1 | |
MEblue | 2315 | KAH7849624.1 | down | α-Amylase |
4438 | KAH7864589.1 | down | Endoglucanase | |
1216 | KAH7840938.1 | down | Endoglucanase | |
694 | KAH7837295.1 | down | β-glucosidase | |
1073 | KAH7839787.1 | down | Glucan endo-1,3-β-glucosidase1/2/3 | |
3786 | KAH7860109.1 | down | Glucan endo-1,3-β-glucosidase1/2/3 | |
2412 | KAH7850303.1 | down | Glucan 1,3-β-glucosidase | |
303 | KAH7834718.1 | down | Phosphoglucomutase | |
4573 | KAH7865523.1 | down | Aldehyde dehydrogenase (NAD+) | |
4840 | KAH7867194.1 | down | Alcohol dehydrogenase (NADP+) | |
101 | KAH7833386.1 | down | Alcohol dehydrogenase class-P | |
4170 | KAH7862891.1 | down | Endochitinase B | |
2116 | KAH7848277.1 | down | Endochitinase B | |
4333 | KAH7863910.1 | down | Chitinase | |
MEturquoise | 543 | KAH7836374.1 | up | Acetyl-CoA acyltransferase 1 |
3870 | KAH7860773.1 | up | Acyl-CoA oxidase | |
3896 | KAH7860965.1 | up | Cyanohydrin UDP-glucosyltransferase | |
719 | KAH7837441.1 | up | HSP20 family protein | |
3481 | KAH7857874.1 | up | Heat shock 70kDa protein | |
4457 | KAH7864708.1 | up | Peroxidase | |
3694 | KAH7859366.1 | up | Glutathione S-transferase | |
MEsteelblue | 39 | KAH7832952.1 | up | HSP20 family protein |
4124 | KAH7862607.1 | up | Vesicle-associated membrane protein 72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Gong, J.; Jiang, K.; Huang, L.; Gan, L.; Zeng, Y.; Cheng, X.; Pathier, D.; Shen, W. Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming. Plants 2025, 14, 2137. https://doi.org/10.3390/plants14142137
Li L, Gong J, Jiang K, Huang L, Gan L, Zeng Y, Cheng X, Pathier D, Shen W. Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming. Plants. 2025; 14(14):2137. https://doi.org/10.3390/plants14142137
Chicago/Turabian StyleLi, Longna, Jiaxin Gong, Ke Jiang, Liqin Huang, Lijun Gan, Yan Zeng, Xu Cheng, Didier Pathier, and Wenbiao Shen. 2025. "Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming" Plants 14, no. 14: 2137. https://doi.org/10.3390/plants14142137
APA StyleLi, L., Gong, J., Jiang, K., Huang, L., Gan, L., Zeng, Y., Cheng, X., Pathier, D., & Shen, W. (2025). Molecular Hydrogen Improves Blueberry Main Fruit Traits via Metabolic Reprogramming. Plants, 14(14), 2137. https://doi.org/10.3390/plants14142137