Molecular Diagnosis of Plant Pathogenic Bacteria and Disease Management Strategies

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Protection and Biotic Interactions".

Deadline for manuscript submissions: 25 June 2025 | Viewed by 320

Special Issue Editors


E-Mail Website
Guest Editor
Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy
Interests: phytopathogenic bacteria; bacterial diseases; detection and identification; characterization of bacterial populations; resistance induction
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Research Centre for Plant Protection and Certification, Council for Agricultural Research and Economics (CREA), 00156 Roma, Italy
Interests: diagnoses in plant bacteriology; collection of plant pathogenic bacteria; test development and validation of diagnostic protocols; crop protection; biological and epidemiological research
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Plant bacterial pathogens globally infect plants, leading to significant damage and loss in terms of plant quality and yield. Controlling bacterial diseases is challenging: the use of antibiotics is not permitted in many countries worldwide, chemical compounds pose a risk of environmental contamination, and recent guidelines emphasize the need to minimize the impact of these compounds on the environment. To prevent the introduction of dangerous phytopathogenic bacteria to our crops (e.g., quarantine, alien species), it is essential to use reliable diagnostic techniques that are sensitive, specific, reproducible, and repeatable. Furthermore, it is crucial to prevent the spread of bacterial pathogens already established through the implementation of disease control and management strategies based on effective and environmentally low-impact systems. It is worth noting that controlling bacterial diseases is becoming increasingly challenging due to the prohibition of antibiotics in many countries worldwide and the environmental contamination risks associated with chemical compounds. For this purpose, the parallel development of new diagnostic tools for phytopathogenic bacteria and the disease management systems they cause is essential to prevent their introduction and spread.

Dr. Stefania Loreti
Dr. Scala Valeria
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytopathogenic bacteria
  • diagnostics
  • molecular tools
  • bacterial plant diseases
  • prevention
  • control

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1879 KiB  
Article
Pantoea stewartii subsp. stewartii an Inter-Laboratory Comparative Study of Molecular Tests and Comparative Genome Analysis of Italian Strains
by Valeria Scala, Nicoletta Pucci, Riccardo Fiorani, Alessia L’Aurora, Alessandro Polito, Marco Di Marsico, Riccardo Aiese Cigliano, Eleonora Barra, Serena Ciarroni, Francesca De Amicis, Salvatore Fascella, Francesca Gaffuri, Andreas Gallmetzer, Francesca Giacobbi, Pasquale Domenico Grieco, Valeria Gualandri, Giovanna Mason, Daniela Pasqua di Bisceglie, Domenico Rizzo, Maria Rosaria Silletti, Simona Talevi, Marco Testa, Cosimo Tocci and Stefania Loretiadd Show full author list remove Hide full author list
Plants 2025, 14(10), 1470; https://doi.org/10.3390/plants14101470 - 14 May 2025
Abstract
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium causing Stewart wilt, a severe disease in maize. Native to North America, it has spread globally through the maize seed trade. Resistant maize varieties and insecticides are crucial to mitigate the disease’s economic impact. [...] Read more.
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium causing Stewart wilt, a severe disease in maize. Native to North America, it has spread globally through the maize seed trade. Resistant maize varieties and insecticides are crucial to mitigate the disease’s economic impact. Pss is a quarantine pest, requiring phytosanitary certification for the seed trade in European countries. Accurate diagnostic tests, including real-time PCR, are fundamental to detect Pss and distinguish it from other bacteria, like Pantoea stewartii subsp. indologenes (Psi), a non-quarantine bacteria associated with maize seeds. Population genetics is a valuable tool for studying adaptation, speciation, population structure, diversity, and evolution in plant bacterial pathogens. In this study, the key activities of interlaboratory comparisons are reported to assess diagnostic sensitivity (DSE), diagnostic specificity (DSP) and accuracy (ACC) for different real-time PCR able to detect Pss in seeds. The results of complete sequencing of Italian bacterial isolates are presented. This study enhances our understanding of molecular methods for diagnosing and identifying pathogens in maize seeds, improving knowledge of Pss genomes to prevent their spread and trace possible entry routes from endemic to non-endemic areas. Full article
Show Figures

Figure 1

Back to TopTop