Traditional Cultivars as a Genetic Source of Stress Tolerance and Quality Enhancement

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Response to Abiotic Stress and Climate Change".

Deadline for manuscript submissions: closed (25 November 2024) | Viewed by 13152

Special Issue Editors


E-Mail Website
Guest Editor
Agrochemical Laboratory, Agricultural Institute Osijek, HR-31000 Osijek, Croatia
Interests: abiotic stress; biotic stress; senescence; photosynthesis; chlorophyll fluorescence; stress defence mechanisms; ROS; phenolics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department for Fruit Growing, Agricultural Institute Osijek, HR-31000 Osijek, Croatia
Interests: abiotic stress; stress tolerance; photosynthesis; chlorophyll fluorescence; stress defense mechanisms; ROS; fruit quality; in vitro culture

Special Issue Information

Dear Colleagues,

Traditional cultivars are related to specific regions, mostly grown in backyards and small orchards, and their origins are mostly unknown. They are locally adapted to their natural environments. Due to global climate change, the most important characteristic of plants is their tolerance to different abiotic and biotic stresses, such as drought, extreme temperatures, diseases and pest resistance. Recent studies have shown that fruits or grains of traditional cultivars have valuable nutritive characteristics and a better capacity to tolerate biotic and abiotic stresses compared with commercial ones. Therefore, the preservation of traditional cultivars is very important in order to harness the genetic variability for breeding and for the revitalization of the production assortment for specific conditions. A description of the characteristics of traditional cultivars and their resistance to stress is the first step in achieving this goal. Therefore, all original articles and reviews covering any aspect of traditional cultivar analysis, including pomology, phenology, morphology, plant ultrastructure, metabolism, biochemistry, proteomics, transcriptomics and other related topics on any crop or fruit species, or any other cultivated plant species, are welcome to contribute to this Special Issue.  

Dr. Marija Viljevac Vuletić
Dr. Ines Mihaljević
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • yield
  • pomology
  • crop production and quality
  • stress tolerance
  • breeding
  • physiology
  • bioactive compounds
  • photosynthesis
  • metabolism
  • abiotic stress
  • biotic stress

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 1404 KiB  
Article
Evaluating Maize Hybrids for Yield, Stress Tolerance, and Carotenoid Content: Insights into Breeding for Climate Resilience
by Călin Popa, Roxana Elena Călugăr, Andrei Varga, Edward Muntean, Ioan Băcilă, Carmen Daniela Vana, Ionuț Racz, Nicolae Tritean, Ioana Virginia Berindean, Andreea D. Ona and Leon Muntean
Plants 2025, 14(1), 138; https://doi.org/10.3390/plants14010138 - 6 Jan 2025
Cited by 1 | Viewed by 1068
Abstract
To ensure food and feed security, modern maize hybrids must not only perform well under changing climate conditions but also consistently achieve higher and stable yields, exhibit maximum tolerance to stress factors, and produce high quality grains. In a study conducted in 2022 [...] Read more.
To ensure food and feed security, modern maize hybrids must not only perform well under changing climate conditions but also consistently achieve higher and stable yields, exhibit maximum tolerance to stress factors, and produce high quality grains. In a study conducted in 2022 and 2023, 50 maize hybrids were developed from crosses of five elite (highly productive) inbred lines and ten lines possessing favorable genes for carotenoid content. These hybrids were tested under particularly unfavorable conditions for maize cultivation. The aim was to identify which lines effectively transmit the desired traits to the offspring (general combining ability—GCA), and to identify superior hybrids in terms of productivity, adaptability, and quality (specific combining ability—SCA). The study revealed that total carotenoids ranged from 2.30 to 40.20 μg/g for the inbred lines and from 7.45 to 25.08 μg/g for hybrids. A wider distribution of values was observed in the inbred lines compared to the hybrids for key carotenoids such as lutein, zeaxanthin, β-cryptoxanthin, and β-carotene. Among the hybrids, notable performers in yield, adaptability, and carotenoid content included E390×D302, A452×D302, and A447×D302. The paternal inbred line D302 exhibited a high general combining ability for yield (1446 kg ha−1) and, when crossed with several inbred lines, produced hybrids with enhanced yields and higher levels of zeaxanthin, lutein, and β-carotene, as well as improved unbroken plants percent. Full article
Show Figures

Figure 1

18 pages, 5158 KiB  
Article
Mining of Candidate Genes and Developing Molecular Markers Associated with Pokkah Boeng Resistance in Sugarcane (Saccharum spp.)
by Haidong Lin, Zhengjie Jiang, Tuan He, Guomeng Li, Mengyu Zhao, Liangyinan Su, Jihan Zhao, Chengwu Zou and Xiping Yang
Plants 2024, 13(24), 3497; https://doi.org/10.3390/plants13243497 - 14 Dec 2024
Viewed by 903
Abstract
Sugarcane Pokkah Boeng (PB), a fungal disease caused by Fusarium spp., poses a significant threat to sugar industries globally. Breeding sugarcane varieties resistant to PB has become a priority, and the mining of PB resistance genes and the development of molecular markers provide [...] Read more.
Sugarcane Pokkah Boeng (PB), a fungal disease caused by Fusarium spp., poses a significant threat to sugar industries globally. Breeding sugarcane varieties resistant to PB has become a priority, and the mining of PB resistance genes and the development of molecular markers provide a solid foundation for this purpose. This work comprehensively analyzes the genetic components of sugarcane’s resistance to PB using transcriptome sequencing. A segregating population was created by crossing the susceptible parent ROC25 with the resistant parent Yunzhe89-7, which is a traditional cultivar known for its PB resistance. Transcriptome analysis uncovered many differentially expressed genes (DEGs) associated with PB resistance. Utilizing weighted gene co-expression network analysis (WGCNA), we identified gene modules closely related to disease phenotypes. We annotated their functions with bioinformatics tools, particularly focusing on genes enriched in the plant immune response’s MAPK signaling pathway and ABC transporter synthesis pathways. In addition, by integrating whole-genome resequencing data of parental lines and transcriptome data of progeny, we identified a series of putative molecular markers that potentially effectively differentiate between highly resistant and susceptible materials. Our study provides crucial genetic resources and molecular methodologies that are essential for the advancement of sugarcane varieties with improved resistance to PB. These innovations are expected to accelerate the breeding process greatly. Full article
Show Figures

Figure 1

20 pages, 1903 KiB  
Article
Evaluating Guayule (Parthenium argentatum A. Gray) Germplasm Grown in Spain: Rubber and Resin along Three Production Cycles
by Francisco Miguel Jara, María de las Mercedes García-Martínez, Horacio López-Córcoles, María Engracia Carrión, Amaya Zalacain and Manuel Carmona
Plants 2024, 13(8), 1092; https://doi.org/10.3390/plants13081092 - 13 Apr 2024
Cited by 2 | Viewed by 1051
Abstract
Rubber and resin are potentially important products of guayule (Parthenium argentatum A. Gray) that can assure the profitability of this crop as an agricultural alternative for the semi-arid areas of central and eastern Spain. This study analyzes, for the first time, the [...] Read more.
Rubber and resin are potentially important products of guayule (Parthenium argentatum A. Gray) that can assure the profitability of this crop as an agricultural alternative for the semi-arid areas of central and eastern Spain. This study analyzes, for the first time, the changes in rubber and resin production across 27 guayule accessions (traditional and modern) and along three cycles under the agroclimatic conditions of Castilla-La Mancha, simulating industrial management with a biannual harvest. The rubber content (% of dry mass) increased from 4.2% in one-year-old plants to 6.6% in two-year-old plants, but decreased after harvesting. Contrastingly, the rubber yield doubled in contiguous sampling, reaching a mean of 303.6 kg ha−1, with a maximum yield of 341.2 kg ha−1 after the first harvest. Three patterns of rubber production were established based on the production periods. A similar analysis was performed for resin production, which was heterogeneous across accessions belonging to the same rubber groups. In this case, three independent groups were established to classify the resin accumulation profiles following the same criteria of production periods. Here, we demonstrate that biannual harvesting has the potential to enhance rubber accumulation in summer, although more research is needed for its adaption to current harvesting techniques in this area. Full article
Show Figures

Figure 1

14 pages, 3097 KiB  
Article
Genetic Variability in Carotenoid Contents in a Panel of Genebank Accessions of Temperate Maize from Southeast Europe
by Domagoj Šimić, Vlatko Galić, Antun Jambrović, Tatjana Ledenčan, Kristina Kljak, Ivica Buhiniček and Hrvoje Šarčević
Plants 2023, 12(19), 3453; https://doi.org/10.3390/plants12193453 - 30 Sep 2023
Cited by 3 | Viewed by 1335
Abstract
Carotenoids are an abundant group of lipid-soluble antioxidants in maize kernels. Maize is a key target crop for carotenoid biofortification focused on using conventional plant breeding in native germplasm of temperate areas traced back partially to traditional cultivars (landraces). In this study, the [...] Read more.
Carotenoids are an abundant group of lipid-soluble antioxidants in maize kernels. Maize is a key target crop for carotenoid biofortification focused on using conventional plant breeding in native germplasm of temperate areas traced back partially to traditional cultivars (landraces). In this study, the objectives were to determine the variability of lutein (LUT), zeaxanthin (ZEA), α-cryptoxanthin (αCX), β-cryptoxanthin (βCX), α-carotene (αC), and β-carotene (βC) contents in the grain of 88 accessions of temperate maize from the Croatian genebank, and to evaluate the relationships among the contents of different carotenoids as well as the relationships between kernel color and hardness and carotenoid content. Highly significant variability among the 88 accessions was detected for all carotenoids. On average, the most abundant carotenoid was LUT with 13.2 μg g−1 followed by ZEA with 6.8 μg g−1 dry matter. A Principal Component Analysis revealed a clear distinction between α- (LUT, αCX, and αC) and β-branch (ZEA; βCX, and βC) carotenoids. β-branch carotenoids were positively correlated with kernel color, and weakly positively associated with kernel hardness. Our results suggest that some genebank accessions with a certain percentage of native germplasm may be a good source of carotenoid biofortification in Southeast Europe. However, due to the lack of association between LUT and ZEA, the breeding process could be cumbersome. Full article
Show Figures

Figure 1

18 pages, 2718 KiB  
Article
Croatian Native Grapevine Varieties’ VOCs Responses upon Plasmopara viticola Inoculation
by Petra Štambuk, Iva Šikuten, Darko Preiner, Edi Maletić, Jasminka Karoglan Kontić and Ivana Tomaz
Plants 2023, 12(2), 404; https://doi.org/10.3390/plants12020404 - 15 Jan 2023
Cited by 1 | Viewed by 2030
Abstract
The Plasmopara viticola pathogen causes one of the most severe grapevine diseases, namely downy mildew. The response to P. viticola involves both visible symptoms and intricate metabolomic alterations, particularly in relation to volatile organic compounds, and depends on the degree of resistance of [...] Read more.
The Plasmopara viticola pathogen causes one of the most severe grapevine diseases, namely downy mildew. The response to P. viticola involves both visible symptoms and intricate metabolomic alterations, particularly in relation to volatile organic compounds, and depends on the degree of resistance of a particular variety. There are numerous native grapevine varieties in Croatia, and they vary in susceptibility to this oomycete. As previously reported, in vitro leaf disc bioassay and polyphenolic compound analysis are complementary methods that can be used to separate native varieties into various resistance classes. This research used the Solid Phase Microextraction-Arrow Gas Chromatography-Mass Spectrometry method to identify the early alterations in the VOCs in the leaves after P. viticola inoculation. Based on the absolute peak area of sesquiterpenes, some discrepancies between the sampling terms were noticed. The presence of certain chemical compounds such as humulene, ylangene, and α-farnesene helped distinguish the non-inoculated and inoculated samples. Although specific VOC responses to P. viticola infection of native varieties from various resistance classes could not be identified, the response of less susceptible native varieties and resistant controls was associated with an increase in the absolute peak area of several compounds, including geranylacetone, ß-ocimene, and (E)-2-hexen-1-ol. Full article
Show Figures

Figure 1

20 pages, 2001 KiB  
Article
Early Antioxidative Response to Desiccant-Stimulated Drought Stress in Field-Grown Traditional Wheat Varieties
by Krešimir Dvojković, Ivana Plavšin, Dario Novoselović, Gordana Šimić, Alojzije Lalić, Tihomir Čupić, Daniela Horvat and Marija Viljevac Vuletić
Plants 2023, 12(2), 249; https://doi.org/10.3390/plants12020249 - 5 Jan 2023
Cited by 7 | Viewed by 2320
Abstract
Extended drought affects the production and quality of wheat (Triticum aestivum L.), one of the world’s most important food crops. Breeding for increased drought resistance is becoming increasingly important due to the rising demand for food production. Four old traditional Croatian wheat [...] Read more.
Extended drought affects the production and quality of wheat (Triticum aestivum L.), one of the world’s most important food crops. Breeding for increased drought resistance is becoming increasingly important due to the rising demand for food production. Four old traditional Croatian wheat cultivars were used in the present study to examine the early antioxidant response of flag leaves to desiccant-stimulated drought stress and to identify drought-tolerant cultivars accordingly. The results indicate that the enzymatic antioxidant system plays the most significant role in the early response of adult wheat plants to drought stress and the removal of excessive H2O2, particularly GPOD and APX. Nada and Dubrava cultivars revealed the strongest activation of the enzymatic defense mechanism, which prevented H2O2 accumulation and lipid peroxidation. Additionally, the Nada cultivar also showed increased synthesis of proline and specific phenolic compounds, which both contribute to the increased stress tolerance. Among the cultivars investigated, cultivar Nada has the broadest genetic base, which may explain why it possesses the ability to activate both enzymatic and non-enzymatic defense mechanisms in an early response to drought stress. This suggests that old traditional wheat cultivars with broad genetic bases can be a valuable source of drought tolerance, which is especially important given the current climate change. Full article
Show Figures

Figure 1

15 pages, 2793 KiB  
Article
Photosynthetic Variability of Oblačinska Sour Cherry Ecotypes under Drought
by Marija Viljevac Vuletić, Daniela Horvat, Ines Mihaljević, Krunoslav Dugalić, Domagoj Šimić, Tihomir Čupić, Vlatka Jurković and Hrvoje Lepeduš
Plants 2022, 11(13), 1764; https://doi.org/10.3390/plants11131764 - 1 Jul 2022
Cited by 2 | Viewed by 2064
Abstract
The selection of drought-tolerant sour cherry genotypes is essential for developing sustainable fruit production in today’s climate-change conditions. The phenotypic heterogenic population of sour cherry Oblačinska, with high and regular yield suitable for mechanical harvesting and industrial processing, is a traditional and predominant [...] Read more.
The selection of drought-tolerant sour cherry genotypes is essential for developing sustainable fruit production in today’s climate-change conditions. The phenotypic heterogenic population of sour cherry Oblačinska, with high and regular yield suitable for mechanical harvesting and industrial processing, is a traditional and predominant cultivar in northern Croatia (Pannonian region) and Serbia commercial orchards. In this context, 2-year old virus-free sour cherry plants of 4 isolated Oblačinska sour cherry ecotypes (OS, 18, D6, and BOR) produced by micropropagation were exposed to severe drought in a greenhouse under semi-controlled conditions to evaluate its photosynthetic intra-varietal variability. Relative water content (RWC), chlorophyll fluorescence (ChlF), and photosynthetic pigments were evaluated during the ten days of the experiment. As a visible symptom of stress, the withering of plants was followed by a diminution of RWC and photosynthetic pigments in the drought exposed leaves of sour cherry ecotypes compared to the control treatment. ChlF elucidated variability in the photosynthetic efficiency within studied sour cherry ecotypes, highlighting PIABS, PItotal, and ψE0 as the most sensitive and thus the most informative JIP parameters for drought screening. Among the investigated ecotypes, BOR proved to be the most sensitive. The Oblačinska sour cherry ecotype OS showed the highest tolerance to drought conditions and, therefore, can be used as a source of tolerance in sour cherry breeding programs. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 3513 KiB  
Review
Recent Advances in Molecular Tools and Pre-Breeding Activities in White Lupin (Lupinus albus)
by Andrea Tosoroni, Valerio Di Vittori, Laura Nanni, Evan Musari, Simone Papalini, Elena Bitocchi, Elisa Bellucci, Alice Pieri, Sofia Ghitarrini, Karolina Susek and Roberto Papa
Plants 2025, 14(6), 914; https://doi.org/10.3390/plants14060914 - 14 Mar 2025
Viewed by 846
Abstract
The higher adaptation of landraces to local agroclimatic conditions resulting from natural and moderate artificial selection by farmers within specific environments makes them a crucial source of alleles and genotypes for cultivation and breeding programs. Unlike modern cultivars, which have been developed under [...] Read more.
The higher adaptation of landraces to local agroclimatic conditions resulting from natural and moderate artificial selection by farmers within specific environments makes them a crucial source of alleles and genotypes for cultivation and breeding programs. Unlike modern cultivars, which have been developed under more intense artificial selective pressures, landraces exhibit a broader genetic base that has been documented in landrace collections for many crops. This review provides an overview of the importance of genetic resource valorisation in legume species, focusing on cultivated species of the Lupinus genus, particularly white lupin (Lupinus albus). On the one hand, legumes, including Lupins, are considered a crucial alternative source of protein within the framework of more sustainable agriculture. On the other hand, they are often neglected species in terms of breeding efforts, despite receiving increasing attention in recent years. Here, we also report on the latest advances in the development of genomic tools, such as the novel pangenome of white lupin and the identification of markers and loci for target adaptation traits, such as tolerance to alkaline soils, which can effectively support the breeding of Lupinus albus, especially for the introgression of desirable alleles from locally adapted varieties. Full article
Show Figures

Figure 1

Back to TopTop