Effects of Metal Stress on Crops

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Physiology and Metabolism".

Deadline for manuscript submissions: closed (30 September 2024) | Viewed by 5841

Special Issue Editor


E-Mail Website
Guest Editor
Center of Natural and Human Sciences, Federal University of ABC, Santo André 09210-170, SP, Brazil
Interests: food crops; metal exposure; metallic nanoparticles; plant stress; human health
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Natural processes and anthropogenic activities may lead to metal contamination of the environment. Crops are susceptible to suffer the influence of metal exposure by atmospheric dry and wet deposition, agrochemicals application and soil uptake. Some metals can accumulate in plant tissues and in edible parts, which is a serious concern to public health threatening food security. Different metals can be beneficial or toxic to crops at different concentration ranges, which requires analytical techniques with adequate sensitivity for its determination. The effects of metal accumulation in crops can trigger directly or indirectly several biochemical, physiological, and morphological disturbances in plants. Understanding the dynamic of metal accumulation and plants defense mechanisms to manage this accumulation is an important issue to keep crops productivity. This Special Issue will focus on the recent advancements in the role of reactive oxygen species, plants pigments, nutritional balance and their contribution to tolerance to metal stress in food crops. Contributions involving metallic nanoparticles effects and tolerance in crops and remediation alternatives are also welcome. This is an interesting opportunity for publishing original research articles or reviews that will improve our knowledge of anthropogenic or natural exposure of plants to metals, which influences human health.

Prof. Dr. Bruno Lemos Batista
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • food crops
  • metal exposure
  • metallic nanoparticles
  • plant stress
  • human health

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3221 KiB  
Article
Potentially Toxic Elements in Urban-Grown Lettuce: Effectiveness of Washing Procedures, Risk Assessment, and Isotopic Fingerprint
by Camila Neves Lange, Bruna Moreira Freire, Lucilena Rebelo Monteiro, Marycel Elena Barboza Cotrim and Bruno Lemos Batista
Plants 2024, 13(19), 2807; https://doi.org/10.3390/plants13192807 - 7 Oct 2024
Viewed by 1330
Abstract
This study investigates the presence of potentially toxic elements (PTEs) in lettuce (Lactuca sativa L.) grown in urban gardens in a highly industrialized city in Brazil and evaluates the effectiveness of different washing methods in reducing contamination. Ten elements (arsenic (As), barium [...] Read more.
This study investigates the presence of potentially toxic elements (PTEs) in lettuce (Lactuca sativa L.) grown in urban gardens in a highly industrialized city in Brazil and evaluates the effectiveness of different washing methods in reducing contamination. Ten elements (arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), vanadium (V), and zinc (Zn)) were analyzed for their concentration, and a health risk assessment was performed. The results showed that Pb concentrations in lettuce from gardens near the Capuava Petrochemical Complex reached 0.77 mg kg−1, exceeding both national and international safety limits. The most effective washing procedure involved the use of sodium hypochlorite, which reduced As by 46%, Pb by 48%, and V by 52%. However, elements such as Ba, Cd, Cr, and Ni showed limited reductions of less than 10% across all washing methods. Health risk assessments revealed a particular concern for children, with the total cancer risk (TCR) exceeding acceptable limits in some gardens. Isotopic analysis of Pb revealed that atmospheric pollution from gasoline emissions and industrial activities were the primary sources of contamination. The elevated levels of Pb, Cr, and As highlight the need for targeted health education in local communities, especially regarding the importance of proper washing techniques. Risk management strategies, including improved contamination control and public awareness, are crucial to minimize exposure to these harmful elements, particularly in vulnerable populations like children. Full article
(This article belongs to the Special Issue Effects of Metal Stress on Crops)
Show Figures

Figure 1

19 pages, 3443 KiB  
Article
The Reaction of Rice Growth to the Arsenic Contamination under Various Irrigation Methods
by Tímea Szalóki, Árpád Székely, Noémi J. Valkovszki, Ákos Tarnawa and Mihály Jancsó
Plants 2024, 13(9), 1253; https://doi.org/10.3390/plants13091253 - 30 Apr 2024
Cited by 1 | Viewed by 1775
Abstract
Several studies have explored how arsenic (As) is absorbed and transported in plants, but less attention has been paid to its impact on rice growth and yield in relation to water management. We aimed to assess how arsenic affects plant development under different [...] Read more.
Several studies have explored how arsenic (As) is absorbed and transported in plants, but less attention has been paid to its impact on rice growth and yield in relation to water management. We aimed to assess how arsenic affects plant development under different irrigation methods. The growth and yield parameters of four rice varieties (‘M 488’, ‘Janka’, ‘Szellő’, and ‘Nembo’) in two greenhouse experiments were analyzed in 2021 and 2022 under different irrigation methods (flooded (F), intermittent (I), and aerobic (A)). Three different As concentrations were set up in the soil: 43 mg kg−1, 24 mg kg−1, and 4 mg kg−1. Our results showed that the high As treatment caused severe damage to the plants including leaf yellowing as well as reduced growth and decreased yield parameters. Alternative water management practices such as I and A irrigation could reduce the negative effects of As. At the high level of As stress (43 mg kg−1), the I irrigation had the most favorable effect on the yield of ’Janka’ among the tested cultivars compared to the F irrigation (in F: 1.64 ± 1.13 g; in I: 5.45 ± 3.69 g). However, the use of fully aerobic conditions increased the likelihood of drought stress. Full article
(This article belongs to the Special Issue Effects of Metal Stress on Crops)
Show Figures

Graphical abstract

17 pages, 8085 KiB  
Article
Lead Toxicity-Mediated Growth and Metabolic Alterations at Early Seedling Stages of Maize (Zea mays L.)
by Muhammad Talha, Muhammad Yousaf Shani, Muhammad Yasin Ashraf, Francesco De Mastro, Gennaro Brunetti, Muhammad Kashif Riaz Khan, Syed Wajih ul Hassan Shah Gillani, Adeel Khan, Shahid Abbas and Claudio Cocozza
Plants 2023, 12(18), 3335; https://doi.org/10.3390/plants12183335 - 21 Sep 2023
Cited by 4 | Viewed by 1889
Abstract
To investigate the toxic effects of lead (Pb) on key metabolic activities essential for proper germination and seedling growth of maize seeds, experiments were carried out with different levels of Pb (0 to 120 mg of Pb L−1 as PbCl2) [...] Read more.
To investigate the toxic effects of lead (Pb) on key metabolic activities essential for proper germination and seedling growth of maize seeds, experiments were carried out with different levels of Pb (0 to 120 mg of Pb L−1 as PbCl2) applied through growth medium to two maize hybrids H-3310S and H-6724. The research findings indicated that growth and metabolic activities were adversely affected by increased Pb contamination in growth medium; however, a slow increase in these parameters was recorded with increasing time from 0 to 120 h. Protease activity decreased with an increase in the level of Pb contamination but increased with time; consequently, a reduction in seed proteins and an increase in total free amino acids were observed with time. Similarly, α-amylase activity decreased with an increase in Pb concentration in growth medium while it increased with increasing time from 0 to 120 h; consequently, reducing and non-reducing sugars increased with time but decreased with exposure to lead. The roots of both maize hybrids had higher Pb contents than those of the shoot, which decreased the uptake of nitrogen, phosphorus, and potassium. All these nutrients are essential for optimal plant growth; therefore, the reduction in growth and biomass of maize seedlings could be due to Pb toxicity that altered metabolic processes, as sugar and amino acids are necessary for the synthesis of metabolic compounds, rapid cell division, and proper functioning of enzymes in the growing embryo, but all were dramatically reduced due to suppression of protease and α-amylase by toxicity of Pb. In general, hybrid H-3310S performed better in Pb-contaminated growth medium than H-6724. Full article
(This article belongs to the Special Issue Effects of Metal Stress on Crops)
Show Figures

Figure 1

Back to TopTop