15th Anniversary of Pharmaceutics—Improvement of Drug Bioavailability

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Pharmaceutical Technology, Manufacturing and Devices".

Deadline for manuscript submissions: 20 October 2024 | Viewed by 5966

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory for the Conception and Application of Bioactive Molecules, Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
Interests: microencapsulation; nanoemulsions; biopharmacy; formulation; pharmaceutical engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Improving the bioavailability of drugs is a critical aspect of pharmaceutical development, as it can lead to better therapeutic outcomes and reduced dosages, thereby minimizing side effects. Bioavailability refers to the proportion of the administered dose of a drug that reaches the systemic circulation and is available to exert its pharmacological effects. This Anniversary Special Issue for the topic “Improvement of bioavailability” will collect some strategies that pharmaceutical researchers and scientists employ to enhance the bioavailability of drugs: formulation optimization, prodrug design, nanotechnology, use of excipients, amorphous solid dispersions, pH adjustment, salt formation, particle size reduction, enhanced permeability, inclusion complexes, co-crystals, modified release formulations, targeted drug delivery.

Due to their inherent and unique physico-chemical characteristics (crystallinity, solubility, stability), each drug, and the appropriate strategy to improve its bioavailability, will depend on its specific characteristics and challenges, such as the administration route. Indeed, pharmaceutical scientists often conduct thorough studies and optimization to select the most effective approach for each particular drug. These strategies will also consider the poor water-soluble characteristics of the drugs to enable adequate bioavailability after administration. This solubility problem greatly hinders pharmaceutical development and ultimately prevents patients from accessing potentially life-saving treatments.

I look forward to receiving your contributions.

Prof. Dr. Thierry Vandamme
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioavailability
  • in vivo formulation optimization
  • improvement pharmacokinetics
  • biopharmacy
  • decrease side effects
  • poor water solubility
  • oral route
  • parenteral route
  • topical administration
  • preformulation
  • preclinical formulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 1806 KiB  
Article
Development of a Clonal and High-Yield Mammalian Cell Line for the Manufacturing of a Hyperactive Human DNase I with Extended Plasma Half-Life Using PASylation® Technology
by Serge M. Stamm, Roland Wagner, Dietmar A. Lang, Arne Skerra and Michaela Gebauer
Pharmaceutics 2024, 16(7), 967; https://doi.org/10.3390/pharmaceutics16070967 - 22 Jul 2024
Viewed by 954
Abstract
Cumulative evidence from several pre-clinical studies suggests that restoration of plasma DNase activity in a thrombo-inflammatory state may improve clinical outcomes. Following injury, hyperactivated immune cells release large amounts of granular proteins together with DNA, which often accumulate in the surrounding environment in [...] Read more.
Cumulative evidence from several pre-clinical studies suggests that restoration of plasma DNase activity in a thrombo-inflammatory state may improve clinical outcomes. Following injury, hyperactivated immune cells release large amounts of granular proteins together with DNA, which often accumulate in the surrounding environment in so-called neutrophil extracellular traps (NETs). Degradation of excess NETs by systemic DNase administration offers a promising therapeutic approach to ameliorate inflammation and dissolve intravascular clots. In order to expand the therapeutic utility of human DNase I, a variant of the enzyme was developed that has both a prolonged systemic half-life and a higher catalytic activity compared to Dornase alfa (Pulmozyme®), the recombinant form of DNase I approved for inhaled therapy of cystic fibrosis. The hyperactive enzyme was “PASylated” by genetic fusion with a strongly hydrophilic and biodegradable PAS-polypeptide to increase its hydrodynamic volume and retard kidney filtration. A stable TurboCell™ CHO-K1-based cell line was generated which is suitable for the future production of PASylated DNase I according to good manufacturing practice (GMP). Furthermore, a robust bioprocess strategy was devised and an effective downstream process was developed. The final protein product is characterized by excellent purity, favorable physicochemical properties, a 14-fold higher DNA-degrading activity than Dornase alfa and a sustained pharmacokinetic profile, with a 22-fold slower clearance in rats. Full article
Show Figures

Figure 1

15 pages, 4844 KiB  
Article
Quality-by-Design-Driven Nanostructured Lipid Scaffold of Apixaban: Optimization, Characterization, and Pharmacokinetic Evaluation
by Kiran Patil, Nayan Gujarathi, Charu Sharma, Shreesh Ojha, Sameer Goyal and Yogeeta Agrawal
Pharmaceutics 2024, 16(7), 910; https://doi.org/10.3390/pharmaceutics16070910 - 8 Jul 2024
Viewed by 885
Abstract
Apixaban, an anticoagulant, is limited in its efficacy due to poor solubility, low bioavailability, and extensive metabolism. This study investigates the application of nanostructured lipid carriers (NLCs) to enhance the bioavailability of Apixaban. NLCs were prepared using the high-pressure homogenization method. The influence [...] Read more.
Apixaban, an anticoagulant, is limited in its efficacy due to poor solubility, low bioavailability, and extensive metabolism. This study investigates the application of nanostructured lipid carriers (NLCs) to enhance the bioavailability of Apixaban. NLCs were prepared using the high-pressure homogenization method. The influence of independent variables, viz., the amount of Tween 80, HPH pressure, and the number of HPH cycles, were studied using a 23 factorial design. The average particle size, PDI, zeta potential, and entrapment efficiency of the optimized NLCs were found to be 232 ± 23 nm, with 0.514 ± 0.13 PDI and zeta potential of about −21.9 ± 2.1 mV, respectively. Additionally, concerning the thermal and crystallographic properties of the drug, the NLCs showed drug entrapment without altering its potency. The in-vitro drug release studies revealed an immediate release pattern, followed by sustained release for up to 48 h. In-vivo pharmacokinetic experiments demonstrated that Apixaban-loaded NLCs exhibited higher values of t1/2 (27.76 ± 1.18 h), AUC0–∞ (19,568.7 ± 1067.6 ng·h/mL), and Cmax (585.3 ± 87.6 ng/mL) compared to free drugs, indicating improved bioavailability. Moreover, a decrease in the elimination rate constant (Kel) reflected the sustained effect of Apixaban with NLCs. NLCs offer improved oral absorption rates and enhanced therapeutic impact compared to free drugs, potentially reducing dose frequency and improving patient outcomes. Full article
Show Figures

Figure 1

13 pages, 4962 KiB  
Article
Novel Hydrogels Based on the Nano-Emulsion Formulation Process: Development, Rheological Characterization, and Study as a Drug Delivery System
by Usama Jamshaid, Nicolas Anton, Mohamed Elhassan, Guillaume Conzatti and Thierry F. Vandamme
Pharmaceutics 2024, 16(6), 812; https://doi.org/10.3390/pharmaceutics16060812 - 14 Jun 2024
Viewed by 741
Abstract
In this study, we present a new type of polymer-free hydrogel made only from nonionic surfactants, oil, and water. Such a system is produced by taking advantage of the physicochemical behavior and interactions between nonionic surfactants and oil and water phases, according to [...] Read more.
In this study, we present a new type of polymer-free hydrogel made only from nonionic surfactants, oil, and water. Such a system is produced by taking advantage of the physicochemical behavior and interactions between nonionic surfactants and oil and water phases, according to a process close to spontaneous emulsification used in the production of nano-emulsions. Contrary to the classical process of emulsion-based gel formulation, we propose a simple one-step approach. Beyond the originality of the concept, these nanoemulgels appear as very promising systems able to encapsulate and deliver various molecules with different solubilities. In the first section, we propose a comprehensive investigation of the gel formation process and its limits through oscillatory rheological characterization, characterization of the sol/gel transitions, and gel strength. The second section is focused on the follow-up of the release of an encapsulated model hydrophilic molecule and on the impact of the rheological gel properties on the release profiles. Full article
Show Figures

Graphical abstract

18 pages, 8366 KiB  
Article
The Development and Characterization of Novel Ionic Liquids Based on Mono- and Dicarboxylates with Meglumine for Drug Solubilizers and Skin Permeation Enhancers
by Takayuki Furuishi, Sara Taguchi, Siran Wang, Kaori Fukuzawa and Etsuo Yonemochi
Pharmaceutics 2024, 16(3), 322; https://doi.org/10.3390/pharmaceutics16030322 - 26 Feb 2024
Cited by 1 | Viewed by 1251
Abstract
In this study, we synthesized a family of novel ionic liquids (ILs) with meglumine (MGM) as cations and tartaric acid (TA), azelaic acid (AA), geranic acid (GA), and capric acid (CPA) as anions, using pharmaceutical additives via simple acid–base neutralization reactions. The successful [...] Read more.
In this study, we synthesized a family of novel ionic liquids (ILs) with meglumine (MGM) as cations and tartaric acid (TA), azelaic acid (AA), geranic acid (GA), and capric acid (CPA) as anions, using pharmaceutical additives via simple acid–base neutralization reactions. The successful synthesis was validated by attenuated total reflection–Fourier transform infrared (ATR-FTIR) and powder X-ray diffraction (PXRD). Thermal analysis using differential scanning calorimetry confirmed the glass transition temperature of MGM-ILs to be within the range of −43.4 °C–−13.8 °C. We investigated the solubilization of 15 drugs with varying pKa and partition coefficient (log P) values using these ILs and performed a comparative analysis. Furthermore, we present MGM-IL as a new skin permeation enhancer for the drug model flurbiprofen (FRP). We confirmed that AA/MGM-IL improves the skin permeation of FRP through hairless mouse skin. Moreover, AA/MGM-IL enhanced drug skin permeability by affecting keratin rather than stratum corneum lipids, as confirmed by ATR-FTIR. To conclude, MGM-ILs exhibited potential as drug solubilizer and skin permeation enhancers of drugs. Full article
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 5074 KiB  
Review
Strategies to Improve the Transdermal Delivery of Poorly Water-Soluble Non-Steroidal Anti-Inflammatory Drugs
by Alexandra Balmanno, James R. Falconer, Halley G. Ravuri and Paul C. Mills
Pharmaceutics 2024, 16(5), 675; https://doi.org/10.3390/pharmaceutics16050675 - 16 May 2024
Viewed by 1356
Abstract
The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in [...] Read more.
The transdermal delivery of non-steroidal anti-inflammatory drugs (NSAIDs) has the potential to overcome some of the major disadvantages relating to oral NSAID usage, such as gastrointestinal adverse events and compliance. However, the poor solubility of many of the newer NSAIDs creates challenges in incorporating the drugs into formulations suitable for application to skin and may limit transdermal permeation, particularly if the goal is therapeutic systemic drug concentrations. This review is an overview of the various strategies used to increase the solubility of poorly soluble NSAIDs and enhance their permeation through skin, such as the modification of the vehicle, the modification of or bypassing the barrier function of the skin, and using advanced nano-sized formulations. Furthermore, the simple yet highly versatile microemulsion system has been found to be a cost-effective and highly successful technology to deliver poorly water-soluble NSAIDs. Full article
Show Figures

Figure 1

Back to TopTop