New Nano-Systems for Imaging, Diagnostics, and Drug Delivery

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: closed (20 May 2025) | Viewed by 4584

Special Issue Editors


E-Mail Website
Guest Editor
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
Interests: nanomedicine; infectious diseases; drug delivery; formulation; affinity; bioseparations
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
Interests: nanomedicine; drug delivery; blood-brain barrier; brain disorders
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Department of Applied Physics, University of Barcelona, 08028 Barcelona, Spain
2. Molecular Bionics Lab, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
Interests: in situ TEM; misfolded proteins; protein aggregation and dynamics; mesoscale systems; polymer self-assembly; drug delivery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute to this Special Issue of the Pharmaceutics and Nanomaterials MDPI journals on the topic of “New Nano-Systems for Imaging, Diagnostics, and Drug Delivery”.

The advent of mRNA vaccines has demonstrated the potential of nanomaterial-based systems to have a beneficial clinical impact. However, many challenges remain in material design to optimize responsiveness, bioreactivity and scalability, as well as therapy encapsulation, tissue targeting and controlled release.

This Special Collection aims to highlight the latest developments and efforts in the field to translate nanomaterials into clinical practice. Original research articles and reviews are welcome. Research areas may include, but are not limited to, imaging, diagnostics and drug delivery materials applied to oncology, immunology or neuroscience.

We look forward to receiving your contributions.

You may choose our Joint Special Issue in Nanomaterials.

Dr. Iris Batalha
Dr. Daniel Gonzalez-Carter
Dr. Lorena Ruiz-Pérez
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomedicine
  • drug delivery
  • imaging
  • diagnostics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 14743 KiB  
Article
Mechanistic Insights into Sphingomyelin Nanoemulsions as Drug Delivery Systems for Non-Small Cell Lung Cancer Therapy
by Emma Ramos Docampo, Jenifer García-Fernández, Inés Mármol, Irene Morín-Jiménez, Maria Iglesias Baleato and María de la Fuente Freire
Pharmaceutics 2025, 17(4), 461; https://doi.org/10.3390/pharmaceutics17040461 - 2 Apr 2025
Viewed by 619
Abstract
Sphingomyelin nanoemulsions (SNs) are promising drug delivery systems with potential for treating challenging tumors, including non-small cell lung cancer (NSCLC), which has a poor prognosis and a 5-year survival rate below 5%. Understanding the toxicity mechanisms and intracellular behavior of SNs is crucial [...] Read more.
Sphingomyelin nanoemulsions (SNs) are promising drug delivery systems with potential for treating challenging tumors, including non-small cell lung cancer (NSCLC), which has a poor prognosis and a 5-year survival rate below 5%. Understanding the toxicity mechanisms and intracellular behavior of SNs is crucial for optimizing their therapeutic application. This study aims to investigate the interaction between SNs and A549 lung adenocarcinoma cells, focusing on their cytotoxic effects and mechanisms of cellular toxicity. SNs were synthesized and characterized for size, surface charge, and stability. A549 cells were treated with varying concentrations of SNs, and cellular uptake pathways were assessed using inhibitors of energy-dependent processes. Cytotoxicity was evaluated through an alamarBlue assay to determine the IC50 value after 24 h. Mechanisms of toxicity, including lysosomal and mitochondrial involvement, were examined using co-localization studies, mitochondrial membrane potential assays, and markers of apoptosis. SNs exhibited rapid cellular uptake via energy-dependent pathways. The IC50 concentration for A549 cells was 0.89 ± 0.15 mg/mL, suggesting favorable cytocompatibility compared to other nanocarriers. At IC50, SNs induced apoptosis characterized by lysosomal damage, mitochondrial membrane permeabilization, and the release of apoptotic factors. These effects disrupted autophagic flux and contributed to cell death, demonstrating potential for overcoming drug resistance. Resveratrol-loaded SNs showed enhanced cytotoxicity, supporting their application as targeted drug delivery vehicles. This study highlights the potential of SNs as efficient drug delivery systems for NSCLC therapy, offering insights into their cellular interactions and toxicity mechanisms. These findings pave the way for the rational design of SN-based therapeutic platforms for cancer and other mitochondria-related diseases. Full article
(This article belongs to the Special Issue New Nano-Systems for Imaging, Diagnostics, and Drug Delivery)
Show Figures

Figure 1

15 pages, 2881 KiB  
Article
Development of a Graphene Oxide-Based Aptamer Nanoarray for Improved Neutralization and Protection Effects Against Ricin
by Huafei Li, Yanwen Ai, Yanjin Wu, Ruyu Fan, Yuan Tian, Shuangqun Chen, Wei Wan and Cong Wu
Pharmaceutics 2024, 16(11), 1455; https://doi.org/10.3390/pharmaceutics16111455 - 14 Nov 2024
Cited by 1 | Viewed by 1137
Abstract
Background/Objectives: Ricin’s high toxicity and potential as a bioweapon underscore the need for effective antidotes. Monoclonal antibodies, though effective, are limited by complex production. This study aimed to develop a graphene oxide-based aptamer nanoarray (ARMAN) for improved neutralization and protection against ricin. [...] Read more.
Background/Objectives: Ricin’s high toxicity and potential as a bioweapon underscore the need for effective antidotes. Monoclonal antibodies, though effective, are limited by complex production. This study aimed to develop a graphene oxide-based aptamer nanoarray (ARMAN) for improved neutralization and protection against ricin. Methods: High-affinity aptamers targeting ricin’s RTA and RTB subunits were selected using SELEX technology and conjugated to graphene oxide (GO) via click chemistry. ARMAN’s characteristics, including morphology, stability, and biosecurity, were assessed. Its performance was evaluated in terms of affinity for ricin, neutralization capacity, and therapeutic effects in cellular assays and a mouse model of ricin poisoning. Results: ARMAN exhibited a uniform morphology with an average particle size of 217 nm and demonstrated significantly enhanced affinity for ricin compared to free aptamers. ARMAN showed rapid and effective neutralization ability, significantly increasing cell viability in BEAS-2B, GES-1, and HL7702 cell lines exposed to ricin. In vivo, ARMAN treatment led to a notable prolongation of survival in ricin-poisoned mice, highlighting its potential for both pre- and post-exposure treatment. These findings indicate that ARMAN not only neutralizes ricin effectively but also provides a therapeutic window for treatment. Conclusions: ARMAN’s superior binding affinity, serum stability, biocompatibility, and broad therapeutic efficacy make it a promising new antidote against ricin poisoning. This study’s findings represent significant progress in the development of rapid-response antidotes, with ARMAN offering a potential solution for both military and civilian emergency response scenarios. Full article
(This article belongs to the Special Issue New Nano-Systems for Imaging, Diagnostics, and Drug Delivery)
Show Figures

Graphical abstract

14 pages, 4213 KiB  
Article
Modulating the Nature of Ionizable Lipids and Number of Layers in Hyaluronan-Decorated Lipid Nanoparticles for In Vitro Delivery of RNAi
by Victor Passos Gibson, Houda Tahiri, Claudia Gilbert, Chun Yang, Quoc Thang Phan, Xavier Banquy and Pierre Hardy
Pharmaceutics 2024, 16(4), 563; https://doi.org/10.3390/pharmaceutics16040563 - 20 Apr 2024
Cited by 2 | Viewed by 2207
Abstract
Lipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention [...] Read more.
Lipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention in the biomedical field. Illuminated by our previous work, here we investigate if the LbL approach could be used to modify the LNP cores formulated with three different ionizable lipids: DODMA, MC3, and DODAP. Additionally, we wondered if more than three layers could be loaded onto LNPs without disrupting their gene transfection ability. Taking advantage of physicochemical analysis, as well as uptake and gene silencing studies, we demonstrate the feasibility of modifying the surface of LNPs with the LbL assembly. Precisely, we successfully modified three different LNPs using the layer-by-layer strategy which abrogated luciferase activity in vitro. Additionally, we constructed a 5×-layered HA-LNP containing the MC3 ionizable lipid which outperformed the 3×-layered counterpart in transfecting miRNA-181-5p to the pediatric GBM cell line, as a proof-of-concept in vitro experiment. The method used herein has been proven reproducible, of easy modification to adapt to different ionizable lipid-containing LNPs, and holds great potential for the translation of RNA-based therapeutic strategies. Full article
(This article belongs to the Special Issue New Nano-Systems for Imaging, Diagnostics, and Drug Delivery)
Show Figures

Figure 1

Back to TopTop