Immunity and Immunoregulation in Helminth Infections

A special issue of Pathogens (ISSN 2076-0817). This special issue belongs to the section "Immunological Responses and Immune Defense Mechanisms".

Deadline for manuscript submissions: 31 August 2025 | Viewed by 1918

Special Issue Editor


E-Mail Website
Guest Editor
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico
Interests: immunoregulation in parasitic diseases; helminths; dendritic cell; macrophage’s response to inflammatory stimulus; interactions between helminths and their molecules with the host; inflammatory-mediated diseases
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Helminth infections are a major public health problem worldwide. They are deeply rooted in human evolution and will prevail for many years to come. They can disseminate in their host in almost any tissue, from muscle to brain. Thus, it is critical to not forget about the damage they cause to the people suffering from these infections. The only way to eradicate or control such helminth infections is to increase our knowledge of them: studies on host immunity can deepen our understanding of the pathogenesis of helminth infections. On the other hand, capacities that many helminth parasites have to regulate the immune response of their hosts to remain inside them for long periods, sometimes without causing any symptoms, are well-established. This immune silence needs to be broken to generate immunity. Therefore, if we know these helminth–immunoregulatory mechanisms, we could develop vaccines against them or take advantage of such activities to modulate unwanted exacerbated immune responses.

Therefore, the goal of this Special Issue is to put together the recent findings achieved, despite the pandemic, by researchers interested in helminth infections.

This Special Issue invites either original research or review articles focused on, but not limited to, the following “hot topics” in parasitic helminths research:

  • Immunomodulation on parasitic helminth diseases;
  • Immunity to helminths;
  • Cytokines/chemokines and susceptibility or resistance to helminth infections
  • Co-infections;
  • Co-morbidities during parasitic helminth infections;
  • Signaling pathways and susceptibility to helminths;
  • Role of innate lymphoid cells (ILCs) in helminth immunity;
  • Vaccine development against helminth

Dr. Luis I. Terrazas
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pathogens is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • helminths
  • cytokines
  • signaling pathways
  • co-infections
  • infections and co-morbidities
  • immunity
  • immunomodulation
  • immune checkpoints
  • pathogenesis
  • vaccines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

23 pages, 3795 KiB  
Article
Exploring Gene Expression Changes in Murine Female Genital Tract Tissues Following Single and Co-Infection with Nippostrongylus brasiliensis and Herpes Simplex Virus Type 2
by Roxanne Pillay, Pragalathan Naidoo and Zilungile L. Mkhize-Kwitshana
Pathogens 2025, 14(8), 795; https://doi.org/10.3390/pathogens14080795 - 8 Aug 2025
Viewed by 176
Abstract
Background and Aim: The immunological interactions between soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2), particularly in the context of co-infection, are poorly understood. Next-generation sequencing (NGS) offers a powerful approach to explore these complex immune responses and uncover potential therapeutic [...] Read more.
Background and Aim: The immunological interactions between soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2), particularly in the context of co-infection, are poorly understood. Next-generation sequencing (NGS) offers a powerful approach to explore these complex immune responses and uncover potential therapeutic targets. This study leveraged NGS and bioinformatic tools to investigate transcriptional changes and immunological pathways in female genital tract (FGT) tissues of BALB/c mice acutely infected with Nippostrongylus brasiliensis (Nb), HSV-2, or co-infected. Methods: Total RNA was harvested from FGT tissues of BALB/c mice infected with Nb, HSV-2, co-infected with both pathogens, and uninfected controls. Differentially expressed genes (DEGs) were identified by comparing uninfected versus infected FGT tissues in R using edgeR and limma packages. Immune-related genes were identified by intersecting DEGs in each group-wise comparison with immune function gene sets derived from the Mouse Genome Informatics (MGI) database. Functional and pathway enrichment analyses were performed with g: Profiler and protein–protein interaction networks were built using the STRING database and visualized with Cytoscape. Key hub genes and significant gene modules were identified using the Cytoscape plugins CytoHubba and MCODE, followed by further functional analysis of these modules. Results: NGS analysis revealed distinct gene expression profiles in response to single infection with Nb or HSV-2, with both showing significant differences when uninfected controls were compared to infected FGT tissues at a 5% false discovery rate. Notably, there were no significant differences in gene expression profiles between uninfected and co-infected FGT tissues. In the comparison of uninfected versus Nb-infected FGT tissues, 368 DEGs were identified, with 356 genes upregulated and 12 downregulated. Several immune-related genes, such as Ptprc, Ccl11, Ccr2, and Cx3cr1, were significantly altered. Pathway analysis of DEGs, hub genes, and significant modules indicated modulation of immune and defense responses. Notably, Nb infection induced a robust Th2-dominant immune response in the FGT, with downregulation of pro-inflammatory genes. This likely reflects helminth-driven modulation that may impair protective Th1 responses and highlights the systemic impact of Nb on the FGT immunity. In the comparison of uninfected versus HSV-2-infected FGT tissues, 140 DEGs were identified, with 121 upregulated and 19 downregulated. Immune-related genes, including Ldlr, Camk1d, Lrp8 and Epg5, were notably altered. HSV-2 infection led to early and predominant downregulation of immune genes, consistent with viral immune evasion strategies. In addition, functional analysis revealed enrichment in cell cycle and sterol biosynthesis pathways, suggesting that HSV-2 modulates host metabolism to support viral replication while influencing immune responses. In co-infection, no significant transcriptional changes were observed, potentially reflecting immune antagonism where Nb-induced Th2 responses may suppress HSV-2-driven Th1 immune responses. Conclusions: This preliminary study offers insights into the gene expression responses in the FGT to acute single and co-infection with Nb and HSV-2. Together, these findings reveal distinct transcriptomic changes in the FGT following Nb and HSV-2 infection, with co-infection potentially leading to immune antagonism and transcriptional equilibrium. This highlights the complex interplay between helminth- and virus-induced immune modulation in shaping FGT immunity. By leveraging NGS, this study highlights important immune-related pathways and serves as a foundation for further investigations into the mechanistic roles of DEGs in immunity to these pathogens, with potential implications for developing novel therapeutic strategies. Full article
(This article belongs to the Special Issue Immunity and Immunoregulation in Helminth Infections)
Show Figures

Graphical abstract

13 pages, 504 KiB  
Article
Type 2 Innate Lymphoid Cell (Ilc2)-Deficient Mice Are Transcriptionally Constrained During Nippostrongylus brasiliensis Infection
by Damarius S. Fleming, Fang Liu, Joseph F. Urban, Jr. and Robert W. Li
Pathogens 2025, 14(6), 571; https://doi.org/10.3390/pathogens14060571 - 7 Jun 2025
Viewed by 550
Abstract
Mouse models serve as a means of examining immune changes when genes of interest are knocked out (KO). One group of immune gene-producing cells that have been identified is type 2 innate lymphoid cells (Ilc2). These cells are involved in the production of [...] Read more.
Mouse models serve as a means of examining immune changes when genes of interest are knocked out (KO). One group of immune gene-producing cells that have been identified is type 2 innate lymphoid cells (Ilc2). These cells are involved in the production of Th2 equivalent immune responses and signal cytokine production during the resolution of Nippostrongylus brasiliensis parasite infection in mice lungs. However, many questions about Ilc2 activity in the gut remain. To study this, retinoic acid receptor (RAR)-related orphan receptor alpha (RORα)-deficient mice were infected with adult N. brasiliensis and arranged into four treatment groups. Ten days post-infection (dpi), mouse ileum tissue was extracted for RNA-Seq. The RORα-deficient mice showed little change in gene expression at 10 dpi (N = 51) when compared to the WT mice at 10 dpi (N = 915), displaying dysregulation within the mouse gut. Based on the results, the gene expression in the gut of Ilc2-deficient mice denoted that the inability to craft Ilc2 cells left the mice unable to mount classical helminth immune responses involving humoral, mast cell, and antibody Th2-driven reactions. Overall, the results showed the importance of Ilc2 in the gut during N. brasiliensis infections and the effect that the lack of these cells had on immunity. Full article
(This article belongs to the Special Issue Immunity and Immunoregulation in Helminth Infections)
Show Figures

Figure 1

15 pages, 2682 KiB  
Article
Echinococcus multilocularis Calreticulin Inhibits Lectin Pathway of Complement Activation by Directly Binding to Mannose-Binding Lectin
by Yuxiao Shao, Meng Xia, Yinghui Song, Yan Yan, Xiaofang Dong, Haoran Zong, Bin Zhan, Yanhai Wang and Limei Zhao
Pathogens 2025, 14(4), 354; https://doi.org/10.3390/pathogens14040354 - 5 Apr 2025
Viewed by 696
Abstract
Alveolar Echinococcosis (AE) is a serious zoonotic disease caused by infection of Echinococcus multilocularis larvae. To survive within the host, E. multilocularis has developed a complex immune evasion mechanism including the inhibition of complement activation. This study focused on a calreticulin secreted by [...] Read more.
Alveolar Echinococcosis (AE) is a serious zoonotic disease caused by infection of Echinococcus multilocularis larvae. To survive within the host, E. multilocularis has developed a complex immune evasion mechanism including the inhibition of complement activation. This study focused on a calreticulin secreted by E. multilocularis (EmCRT) and its role in binding ability to human MBL and inhibiting MBL-mannose-mediated lectin pathway of complement activation. Results demonstrated the binding of recombinant EmCRT protein to both external and natural MBL in serum and the subsequent inhibition of MBL-mannose-initiated lectin pathway reflected by the reduced formation of complement intermediate products C3b and C4b. Fragment mapping determined that the MBL binding site was located within the S-domain of EmCRT. Combining with its role in inhibiting C1q-initiated classical complement activation in our previous study, the inhibition of MBL-mannose-initiated lectin pathway identified in this study suggests EmCRT plays an important role in the immune evasion of E. multilocularis alveolar larvae against host complement attack as a survival strategy within human tissue. This study supports the approach of using EmCRT as a good candidate for vaccine and drug development against E. multilocularis infection. Full article
(This article belongs to the Special Issue Immunity and Immunoregulation in Helminth Infections)
Show Figures

Figure 1

Back to TopTop