The Impact of Helminths on Colorectal Cancer: From Infections to the Isolation of Biotherapeutics
Abstract
1. Introduction
2. The Impact of Helminth Infections on Colorectal Cancer
2.1. Pro-Tumorigenic Effects of Helminthic Infections in CRC
2.2. Anti-Tumorigenic Effects of Helminthic Infections
3. The Impact of Helminth-Derived Products on Colorectal Cancer
Anti-Tumorigenic Effects
4. The Impact of Helminth-Derived Products on Colorectal Cancer, Beyond the Immune System
4.1. Pro-Tumorigenic Effects of Helminth-Derived Products
4.2. Anti-Tumorigenic Effects of Helminth-Derived Products
5. The Impact of Isolated Molecules from Helminths in Colorectal Cancer Modulation
5.1. Pro-Tumorigenic Effects
5.2. Anti-Tumorigenic Effects
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
AAMs | Alternatively activated macrophages |
ALES | Ascaris lumbricoides ES products |
AOM | Azoxymethane |
APC | Adenomatous polyposis coli |
ASMA | Autoclaved Schistosoma mansoni antigens |
ATSA | Autoclaved Trichinella spiralis antigens |
BAX | BCL-2-associated X protein |
BCG | Bacillus Calmette-Guerin |
BCL-2 | B-cell lymphoma 2 |
CCR2 | C-C chemokine receptor 2 |
CMS | Consensus molecular subtypes |
COX2 | Cyclooxygenase 2 |
CPT-11 | Irinotecan |
CRC | Colorectal cancer |
CXCL1 | Chemokine (C-X-C motif) ligand 1 |
CXCR2 | C-X-C chemokine receptor 2 |
DCs | Dendritic cells |
DMH | 1,2-dimethylhydrazine |
DNMT1 | DNA methyltransferase 1 |
DSS | Dextran sulfate sodium |
ES | Excreted/secreted |
FAP | Familial adenomatous polyposis syndrome |
HCF | Hydatid cyst fluid |
HES | Heligmosomoides polygyrus excreted/secreted products |
HSP70 | Heat shock protein 70 |
IARC | International Agency for Research on Cancer |
IBD | Inflammatory bowel diseases |
ICAM-1 | Intercellular adhesion molecule 1 |
IECs | Intestinal epithelial cells |
IFN-γ | Interferon gamma |
Ig E/G/G1/G2a | Immunoglobulin E/G/G1/G2a |
IL-1β/2/4/5/6/9/10/13/17/17F/23/25/33 | Interleukin 1β/2/4/5/6/9/10/13/17/17F/23/25/33 |
IL-6R | IL-6 receptor |
ILC2 | Type 2 innate lymphocytes |
iNOS | Inducible nitric oxide synthase |
MDM2 | Murine double minute 2 |
MYC | Myelocytomatosis |
NFκB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NK | Natural killer cells |
PDECGF | Platelet-derived endothelial growth factor |
PTX3 | Pentraxin 3 |
RAGE | Receptors for advanced glycation end products |
rNAPc2 | Recombinant nematode anticoagulant protein c2 |
ROS | Reactive oxygen species |
STAT3 | Signal transducer and activator of transcription 3 |
TcES | Taenia crassiceps excreted/secreted products |
TF | Tissue factor |
TGF-β | Transforming growth factor beta |
Th 1/2/17 | T helper 1/2/17 |
TNF-α | Tumor necrosis factor-alpha |
Tregs | T regulatory cells |
TSLP | Thymic stromal lymphopoietin |
UC | Ulcerative colitis |
VEGF | Vascular endothelial growth factor |
WNT | Wingless-related integration site |
YB-1 | Y-box binding protein 1 |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Lewandowska, A.; Rudzki, G.; Lewandowski, T.; Stryjkowska-Góra, A.; Rudzki, S. Risk Factors for the Diagnosis of Colorectal Cancer. Cancer Control 2022, 29, 10732748211056692. [Google Scholar] [CrossRef]
- Goosenberg, E.; Kaur, A.; Babiker, H.M. A Review of Hereditary Colorectal Cancers; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Xu, Y.; Liu, K.; Li, C.; Li, M.; Liu, F.; Zhou, X.; Sun, M.; Ranganathan, M.; Zhang, L.; Wang, S.; et al. The Largest Chinese Cohort Study Indicates Homologous Recombination Pathway Gene Mutations as Another Major Genetic Risk Factor for Colorectal Cancer with Heterogeneous Clinical Phenotypes. Research 2023, 6, 0249. [Google Scholar] [CrossRef] [PubMed]
- Guinney, J.; Dienstmann, R.; Wang, X.; De Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.; Angelino, P.; et al. The Consensus Molecular Subtypes of Colorectal Cancer. Nat. Med. 2015, 21, 1350. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Su, T.; Xiao, T.; Xu, H.; Zhao, S. Colorectal Cancer Risk in Ulcerative Colitis: An Updated Population-Based Systematic Review and Meta-Analysis. eClinicalMedicine 2025, 84, 103269. [Google Scholar] [CrossRef]
- Sobhani, I.; Bergsten, E.; Charpy, C.; Chamaillard, M.; Mestivier, D. Virulent Bacteria as Inflammatory and Immune Co-Factor in Colon Carcinogenesis: Evidence from Two Monozygotic Patients and Validation in CRC Patient and Healthy Cohorts. Front. Cell. Infect. Microbiol. 2021, 11, 749750. [Google Scholar] [CrossRef]
- Tabung, F.K.; Liu, L.; Wang, W.; Fung, T.T.; Wu, K.; Smith-Warner, S.A.; Cao, Y.; Hu, F.B.; Ogino, S.; Fuchs, C.S.; et al. Association of Dietary Inflammatory Potential with Colorectal Cancer Risk in Men and Women. JAMA Oncol. 2018, 4, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Greten, F.R. The Inflammatory Pathogenesis of Colorectal Cancer. Nat. Revs. Immunol. 2021, 21, 653–667. [Google Scholar] [CrossRef]
- Long, A.G.; Lundsmith, E.T.; Hamilton, K.E. Inflammation and Colorectal Cancer. Curr. Color. Cancer Rep. 2017, 13, 341. [Google Scholar] [CrossRef]
- Stiemsma, L.T.; Reynolds, L.A.; Turvey, S.E.; Finlay, B.B. The Hygiene Hypothesis: Current Perspectives and Future Therapies. Immunotargets Ther. 2015, 4, 143. [Google Scholar] [CrossRef]
- Briggs, N.; Weatherhead, J.; Sastry, K.J.; Hotez, P.J. The Hygiene Hypothesis and Its Inconvenient Truths about Helminth Infections. PLoS Negl. Trop. Dis. 2016, 10, e0004944. [Google Scholar] [CrossRef]
- IARC List of Classifications—IARC Monographs on the Identification of Carcinogenic Hazards to Humans. Available online: https://monographs.iarc.who.int/list-of-classifications (accessed on 8 June 2025).
- Castro, G.A. Helminths: Structure, Classification, Growth, and Development. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch: Galveston, TX, USA, 1996. [Google Scholar]
- Lightowlers, M.W.; Rickard, M.D. Excretory–Secretory Products of Helminth Parasites: Effects on Host Immune Responses. Parasitology 1988, 96, S123–S166. [Google Scholar] [CrossRef]
- Vacca, F.; Le Gros, G. Tissue-Specific Immunity in Helminth Infections. Mucosal Immunol. 2022, 15, 1212–1223. [Google Scholar] [CrossRef] [PubMed]
- Zwiernik, J.; Arłukowicz, T.; Zwiernik, B.; Matyskieła, T.; Gimeła-Dargiewicz, M.; Rakowska, A.; Januszko-Giergielewicz, B.; Rotkiewicz, E. Therapeutic Applicability of Helminths in Autoimmune Diseases—Literature Overview. Prz. Gastroenterol. 2019, 14, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Callejas, B.E.; Martínez-Saucedo, D.; Terrazas, L.I. Parasites as Negative Regulators of Cancer. Biosci. Rep. 2018, 38, BSR20180935. [Google Scholar] [CrossRef]
- Pastille, E.; Frede, A.; McSorley, H.J.; Gräb, J.; Adamczyk, A.; Kollenda, S.; Hansen, W.; Epple, M.; Buer, J.; Maizels, R.M.; et al. Intestinal Helminth Infection Drives Carcinogenesis in Colitis-Associated Colon Cancer. PLoS Pathog. 2017, 13, e1006649. [Google Scholar] [CrossRef]
- Nakatani, K.; Kato, T.; Okada, S.; Matsumoto, R.; Nishida, K.; Komuro, H.; Iida, M.; Tsujimoto, S.; Suganuma, T. Ascending Colon Cancer Associated with Deposited Ova of Schistosoma Japonicum in Non-Endemic Area. IDCases 2016, 6, 52–54. [Google Scholar] [CrossRef]
- Eder, B.V.A.; Bösmüller, H.; Schubert, T.; Bissinger, A.L. Sigmoid Colon Cancer Due to Schistosomiasis. Infection 2019, 47, 1071–1072. [Google Scholar] [CrossRef]
- Ruan, S.L.; Wang, B.; Lu, Q.M.; Dong, L.R.; Cao, C.X.; Xu, S.L.; Shen, W.Y. Expression of Vascular Growth Factors in Intestinal Tissues in Colorectal Carcinoma Patients with Schistosomiasis Japonica. Chin. J. Schistosomiasis Control 2013, 25, 250. [Google Scholar]
- Soliman, N.A.; Keshk, W.A.; Shoheib, Z.S.; Ashour, D.S.; Shamloula, M.M. Inflammation, Oxidative Stress and L-Fucose as Indispensable Participants in Schistosomiasis-Associated Colonic Dysplasia. Asian Pac. J. Cancer Prev. 2014, 15, 1125–1131. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Q.B.; He, W.B.; Wang, Z.Q. Clinicopathological Characteristics and Prognosis of Schistosomal Colorectal Cancer. Color. Dis. 2016, 18, 1005–1009. [Google Scholar] [CrossRef]
- Wang, W.; Lu, K.; Wang, L.; Jing, H.; Pan, W.; Huang, S.; Xu, Y.; Bu, D.; Cheng, M.; Liu, J.; et al. Comparison of Non-Schistosomal Colorectal Cancer and Schistosomal Colorectal Cancer. World J. Surg. Oncol. 2020, 18, 149. [Google Scholar] [CrossRef] [PubMed]
- Salim, E.I.; Harras, S.F.; Abdalla, A.G.; Mona, M.H. Syphacia Muris Infection in Rats Attenuates Colorectal Carcinogenesis through Oxidative Stress and Gene Expression Alterations. Implications for Modulatory Effects by Bryostatin-1. Acta Parasitol. 2018, 63, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Hayes, K.S.; Cliffe, L.J.; Bancroft, A.J.; Forman, S.P.; Thompson, S.; Booth, C.; Grencis, R.K. Chronic Trichuris Muris Infection Causes Neoplastic Change in the Intestine and Exacerbates Tumour Formation in APC Min/+ Mice. PLoS Negl. Trop. Dis. 2017, 11, e0005708. [Google Scholar] [CrossRef]
- Huby, F.; Hoste, H.; Mallet, S.; Fournel, S.; Nano, J.L. Effects of the Excretory/Secretory Products of Six Nematode Species, Parasites of the Digestive Tract, on the Proliferation of HT29-D4 and HGT-1 Cell Lines. Epithelial Cell Biol. 1995, 4, 156–162. [Google Scholar] [PubMed]
- Hoste, H.; Nano, J.L.; Mallet, S.; Huby, F.; Fournel, S.; Rampal, P. Stimulation of HT29-D4 Cell Growth by Excretory/Secretory Products of the Parasite Nematode Trichostrongylus Colubriformis. Epithelial Cell Biol. 1995, 2, 87–92. [Google Scholar]
- Wu, C.; Du, X.; Tang, L.; Wu, J.; Zhao, W.; Guo, X.; Liu, D.; Hu, W.; Helmby, H.; Chen, G.; et al. Schistosoma Japonicum SjE16.7 Protein Promotes Tumor Development via the Receptor for Advanced Glycation End Products (RAGE). Front. Immunol. 2020, 11, 566061. [Google Scholar] [CrossRef]
- León-Cabrera, S.; Callejas, B.E.; Ledesma-Soto, Y.; Coronel, J.; Pérez-Plasencia, C.; Gutiérrez-Cirlos, E.B.; Ávila-Moreno, F.; Rodríguez-Sosa, M.; Hernández-Pando, R.; Marquina-Castillo, B.; et al. Extraintestinal Helminth Infection Reduces the Development of Colitis-Associated Tumorigenesis. Int. J. Biol. Sci. 2014, 10, 948–956. [Google Scholar] [CrossRef]
- Ab Talib, N.N.; Nisha, M.; Ramasamy, R.; Pang, J.C. Preliminary Studies on the Effect of Excretory-Secretory (ES) Ascaris Lumbricoides Antigens on Colorectal Cell Line Viability. Trop. Biomed. 2024, 41, 160–165. [Google Scholar] [CrossRef]
- Rostamirad, S.; Daneshpour, S.; Mofid, M.R.; Andalib, A.; Eskandariyan, A.; Mousavi, S.; Yousofi Da-rani, H. Inhibition of Mouse Colon Cancer Growth Following Immunotherapy with a Fraction of Hydatid Cyst Fluid. Exp. Parasitol. 2023, 249, 108501. [Google Scholar] [CrossRef] [PubMed]
- Berriel, E.; Russo, S.; Monin, L.; Festari, M.F.; Berois, N.; Fernández, G.; Freire, T.; Osinaga, E. Anti-tumor Activity of Human Hydatid Cyst Fluid in a Murine Model of Colon Cancer. Sci. World J. 2013, 2013, 230176. [Google Scholar] [CrossRef] [PubMed]
- Motavallihaghi, S.; Tanzadehpanah, H.; Soleimani Asl, S.; Shojaeian, A.; Yousefimashouf, M.; Barati, N. In Vitro Anticancer Activity of Hydatid Cyst Fluid on Colon Cancer Cell Line (C26). Egypt. J. Med. Hum. Genet. 2023, 24, 15. [Google Scholar] [CrossRef]
- Jacobs, B.A.; Prince, S.; Smith, K.A. Gastrointestinal Nematode-Derived Antigens Alter Colorectal Cancer Cell Proliferation and Migration through Regulation of Cell Cycle and Epithelial-Mesenchymal Transition Proteins. Int. J. Mol. Sci. 2020, 21, 7845. [Google Scholar] [CrossRef]
- Eissa, M.M.; Ismail, C.A.; El-Azzouni, M.Z.; Ghazy, A.A.; Hadi, M.A. Immuno-Therapeutic Potential of Schistosoma Mansoni and Trichinella Spiralis Antigens in a Murine Model of Colon Cancer. Invest. New Drugs 2019, 37, 47–56. [Google Scholar] [CrossRef]
- Callejas, B.E.; Mendoza-Rodríguez, M.G.; Villamar-Cruz, O.; Reyes-Martínez, S.; Sánchez-Barrera, C.A.; Rodríguez-Sosa, M.; Delgado-Buenrostro, N.L.; Martínez-Saucedo, D.; Chirino, Y.I.; León-Cabrera, S.A.; et al. Helminth-derived Molecules Inhibit Colitis-associated Colon Cancer Development through NF-κB and STAT3 Regulation. Int. J. Cancer 2019, 145, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Rodríguez, M.G.; Medina-Reyes, D.; Sánchez-Barrera, C.A.; Fernández-Muñoz, K.V.; Gar-cía-Castillo, V.; Ledesma-Torres, J.L.; González-González, M.I.; Reyes, J.L.; Pérez-Plascencia, C.; Rodríguez-Sosa, M.; et al. Helminth-Derived Molecules Improve 5-Fluorouracil Treatment on Experimental Colon Tumorigenesis. Biomed. Pharmacother. 2024, 175, 116628. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Aguilar, G.; Palencia, S.; Newton, E.; Abo, A. RNAPc2 Inhibits Colorectal Cancer in Mice through Tissue Factor. Clin. Cancer Res. 2009, 15, 208–216. [Google Scholar] [CrossRef]
- Soil-Transmitted Helminth Infections-World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 8 September 2025).
- Hataminejad, M.; Basirpour, B.; Baharlou, M.; Gholami Koohestan, M.; Ziaei Hezarjaribi, H.; Rahimi Esboei, B.; Gholami, S.; Hosseini, S.A.; Saberi, R. Global Prevalence and Correlation of Intestinal Parasitic Infections in Patients with Colorectal Cancer: A Systematic Review and Meta-Analysis. BMC Gastroenterol. 2025, 25, 584. [Google Scholar] [CrossRef]
- Takahashi, S. Vascular Endothelial Growth Factor (VEGF), VEGF Receptors and Their Inhibitors for Antiangiogenic Tumor Therapy. Biol. Pharm. Bull. 2011, 34, 1785–1788. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, Y.; Guo, L. Increased Serum Pentraxin-3 Level Predicts Poor Prognosis in Patients with Colorectal Cancer after Curative Surgery, a Cohort Study. Medicine 2018, 97, e11780. [Google Scholar] [CrossRef]
- Warsinggih; Limanu, F.; Labeda, I.; Lusikooy, R.E.; Mappincara; Faruk, M. The Relationship of Tumor Necrosis Factor Alpha Levels in Plasma toward the Stage and Differentiation Degree in Colorectal Cancer. MCP 2021, 4, 100224. [Google Scholar] [CrossRef]
- Gochman, E.; Mahajna, J.; Shenzer, P.; Dahan, A.; Blatt, A.; Elyakim, R.; Reznick, A.Z. The Expression of INOS and Nitrotyrosine in Colitis and Colon Cancer in Humans. Acta Histochem. 2012, 114, 827–835. [Google Scholar] [CrossRef]
- Grivennikov, S.; Karin, E.; Terzic, J.; Mucida, D.; Yu, G.Y.; Vallabhapurapu, S.; Scheller, J.; Rose-John, S.; Cheroutre, H.; Eckmann, L.; et al. IL-6 and STAT3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis Associated Cancer. Cancer Cell 2009, 15, 103. [Google Scholar] [CrossRef]
- Zhuo, C.; Wu, X.; Li, J.; Hu, D.; Jian, J.; Chen, C.; Zheng, X.; Yang, C. Chemokine (C-X-C Motif) Ligand 1 Is Associated with Tumor Progression and Poor Prognosis in Patients with Colorectal Cancer. Biosci. Rep. 2018, 38, BSR20180580. [Google Scholar] [CrossRef] [PubMed]
- Menon, G.; Kasi, A. Familial Adenomatous Polyposis; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Ren, J.; Sui, H.; Fang, F.; Li, Q.; Li, B. The Application of ApcMin/+ Mouse Model in Colorectal Tumor Research. J. Cancer Res. Clin. Oncol. 2019, 145, 1111–1122. [Google Scholar] [CrossRef]
- Biswas, S.K. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Med. Cell. Longev. 2016, 2016, 5698931. [Google Scholar] [CrossRef]
- Waris, G.; Ahsan, H. Reactive Oxygen Species: Role in the Development of Cancer and Various Chronic Conditions. J. Carcinog. 2006, 5, 14. [Google Scholar] [CrossRef]
- Wong, C.C.; Yu, J. Gut Microbiota in Colorectal Cancer Development and Therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; He, S.; Liao, B.; Wang, M.; Lin, H.; Hu, B.; Lan, X.; Shu, Z.; Zhang, C.; Yu, M.; et al. Orally Administrated Hydrogel Harnessing Intratumoral Microbiome and Microbiota-Related Immune Responses for Potentiated Colorectal Cancer Treatment. Research 2024, 7, 0364. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Pu, L.; Guo, A.; Li, Y.; Liu, Y.; Wang, Y.; Ding, Y.; Du, X.; Guo, X.; Zhang, S.; et al. Helminth Reshapes Host Gut Microbiota and Immunoregulation by Deploying an Antimicrobial Program of Innate Immunity. Gut Microbes 2025, 17, 2496447. [Google Scholar] [CrossRef]
- Brosschot, T.P.; Reynolds, L.A. The Impact of a Helminth-Modified Microbiome on Host Immunity. Mucosal. Immunol. 2018, 11, 1039–1046. [Google Scholar] [CrossRef]
- Ramanan, D.; Bowcutt, R.; Lee, S.C.; Tang, M.S.; Kurtz, Z.D.; Ding, Y.; Honda, K.; Gause, W.C.; Blaser, M.J.; Bonneau, R.A.; et al. Helminth Infection Promotes Colonization Resistance via Type 2 Immunity. Science 2016, 352, 608–612. [Google Scholar] [CrossRef]
- Floudas, A.; Aviello, G.; Schwartz, C.; Jeffery, I.B.; O’Toole, P.W.; Fallon, P.G. Schistosoma Mansoni Worm Infection Regulates the Intestinal Microbiota and Susceptibility to Colitis. Infect. Immun. 2019, 87, e00275-19. [Google Scholar] [CrossRef]
- Shute, A.; Wang, A.; Jayme, T.S.; Strous, M.; McCoy, K.D.; Buret, A.G.; McKay, D.M. Worm Expulsion Is Independent of Alterations in Composition of the Colonic Bacteria That Occur during Experimental Hymenolepis Diminuta-Infection in Mice. Gut Microbes 2020, 11, 497. [Google Scholar] [CrossRef] [PubMed]
- Shute, A.; Callejas, B.E.; Li, S.H.; Wang, A.; Jayme, T.S.; Ohland, C.; Lewis, I.A.; Layden, B.T.; Buret, A.G.; McKay, D.M. Cooperation between Host Immunity and the Gut Bacteria Is Essential for Helminth-Evoked Suppression of Colitis. Microbiome 2021, 9, 186. [Google Scholar] [CrossRef]
- Peón, A.N.; Espinoza-Jiménez, A.; Terrazas, L.I. Immunoregulation by Taenia Crassiceps and Its Antigens. Biomed. Res. Int. 2013, 2013, 498583. [Google Scholar] [CrossRef] [PubMed]
- Matly, A.; Quinn, J.A.; McMillan, D.C.; Park, J.H.; Edwards, J. The Relationship between β-Catenin and Patient Survival in Colorectal Cancer: A Systematic Review and Meta-Analysis. Crit. Rev. Oncol. Hematol. 2021, 163, 103337. [Google Scholar] [CrossRef]
- Ding, J.; Tang, B.; Liu, X.; Bai, X.; Wang, Y.; Li, S.; Li, J.; Liu, M.; Wang, X. Excretory-Secretory Product of Trichinella Spiralis Inhibits Tumor Cell Growth by Regulating the Immune Response and Inducing Apoptosis. Acta Trop. 2022, 225, 106172. [Google Scholar] [CrossRef] [PubMed]
- Ledesma-Soto, Y.; Callejas, B.E.; Terrazas, C.A.; Reyes, J.L.; Espinoza-Jiménez, A.; González, M.I.; León-Cabrera, S.; Morales, R.; Olguín, J.E.; Saavedra, R.; et al. Extraintestinal Helminth Infection Limits Pathology and Proinflammatory Cytokine Expression during DSS-Induced Ulcerative Colitis: A Role for Alternatively Activated Macrophages and Prostaglandins. Biomed. Res. Int. 2015, 2015, 563425. [Google Scholar] [CrossRef]
- Xing, Z.; Liu, S.; He, X. Critical and Diverse Role of Alarmin Cytokines in Parasitic Infections. Front. Cell. Infect. Microbiol. 2024, 14, 1418500. [Google Scholar] [CrossRef]
- Carrilho, F.J.; Chieffi, P.P.; Da Silva, L.C.; Bresson-Hadni, S.; Mantion, G.A.; Miguet, J.P.; Vuitton, D.A.; Ferreira, M.S.; Strauss, E. Helminthiasis. In Textbook of Hepatology: From Basic Science to Clinical Practice, 3rd ed.; Wiley: Hoboken, NJ, USA, 2023; pp. 1040–1067. [Google Scholar] [CrossRef]
- Pandey, H.; Tang, D.W.T.; Wong, S.H.; Lal, D. Helminths in Alternative Therapeutics of Inflammatory Bowel Disease. Intest. Res. 2024, 23, 8–22. [Google Scholar] [CrossRef]
- Magno, C.; Melloni, D.; Galì, A.; Mucciardi, G.; Nicocia, G.; Morandi, B.; Melioli, G.; Ferlazzo, G. The Anti-Tumor Activity of Bacillus Calmette-Guerin in Bladder Cancer Is Associated with an Increase in the Cir-culating Level of Interleukin-2. Immunol Lett 2002, 81, 235–238. [Google Scholar] [CrossRef] [PubMed]
- Yeshi, K.; Ruscher, R.; Loukas, A.; Wangchuk, P. Immunomodulatory and Biological Properties of Helminth-Derived Small Molecules: Potential Applications in Diagnostics and Therapeutics. Front. Parasitol. 2022, 1, 984152. [Google Scholar] [CrossRef] [PubMed]
- Daneshpour, S.; Bahadoran, M.; Hejazi, S.H.; Eskandarian, A.A.; Mahmoudzadeh, M.; Darani, H.Y. Common Antigens between Hydatid Cyst and Cancers. Adv. Biomed. Res. 2016, 5, 9. [Google Scholar] [CrossRef]
- Alao, J.P. The Regulation of Cyclin D1 Degradation: Roles in Cancer Development and the Potential for Therapeutic Invention. Mol. Cancer 2007, 6, 24. [Google Scholar] [CrossRef]
- Song, J.; Du, Z.; Ravasz, M.; Dong, B.; Wang, Z.; Ewing, R.M. A Protein Interaction between β-Catenin and Dnmt1 Regulates Wnt Signaling and DNA Methylation in Colorectal Cancer Cells. Mol. Cancer Res. 2015, 13, 969. [Google Scholar] [CrossRef] [PubMed]
- Mishalian, I.; Bayuh, R.; Levy, L.; Zolotarov, L.; Michaeli, J.; Fridlender, Z.G. Tumor-Associated Neutrophils (TAN) Develop pro-Tumorigenic Properties during Tumor Progression. Cancer Immunol. Immunother. 2013, 62, 1745. [Google Scholar] [CrossRef]
- Sánchez-Barrera, C.Á.; Olguín, J.E.; Terrazas, L.I. A Dual Role for Neutrophils and Myeloid-Derived Suppressor Cells in the Development of Colorectal Cancer. In The Innate Immune System in Health and Disease: From the Lab Bench Work to Its Clinical Implications; Morales-Montor, J., Ed.; Nova Science Publishers: New York, NY, USA, 2022; Volume 1, pp. 145–185. [Google Scholar]
- Olguin, J.E.; Mendoza-Rodriguez, M.G.; Sanchez-Barrera, C.A.; Terrazas, L.I. Is the Combination of Immunotherapy with Conventional Chemotherapy the Key to Increase the Efficacy of Colorectal Cancer Treatment? World J. Gastrointest. Oncol. 2023, 15, 251–267. [Google Scholar] [CrossRef]
- Huels, D.J.; Sansom, O.J. Stem vs Non-Stem Cell Origin of Colorectal Cancer. Br. J. Cancer 2015, 113, 1018–1024. [Google Scholar] [CrossRef]
- Verhagen, M.P.; Joosten, R.; Schmitt, M.; Välimäki, N.; Sacchetti, A.; Rajamäki, K.; Choi, J.; Procopio, P.; Silva, S.; van der Steen, B.; et al. Non-stem cell lineages as an alternative origin of intestinal tumorigenesis in the context of inflammation. Nat. Genet. 2024, 56, 1456–1467. [Google Scholar] [CrossRef] [PubMed]
- Karo-Atar, D.; Gregorieff, A.; King, I.L. Dangerous Liaisons: How Helminths Manipulate the Intestinal Epithelium. Trends Parasitol. 2023, 39, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Terrazas, C.A.; Alcántara-Hernández, M.; Bonifaz, L.; Terrazas, L.I.; Satoskar, A.R. Helminth Excreted/Secreted Products Are Recognized by Multiple Receptors on DCs to Block the TLR Response and Bias Th2 Polarization in a CRAF Dependent Pathway. FASEB J. 2013, 27, 4547. [Google Scholar] [CrossRef]
- Tundup, S.; Srivastava, L.; Norberg, T.; Watford, W.; Harn, D. A Neoglycoconjugate Containing the Human Milk Sugar LNFPIII Drives Anti-Inflammatory Activation of Antigen Presenting Cells in a CD14 Dependent Pathway. PLoS ONE 2015, 10, e0137495. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Li, L.; Dong, D.; Wang, L.; Wang, X.; Yang, K.; Xu, X.; Chen, C.; Wu, X.; Chen, X. Glycomolecules in Echinococcus Granulosus Cyst Fluid Inhibit TLR4-Mediated Inflammatory Responses via c-Raf. Cell. Mol. Immunol. 2019, 17, 423. [Google Scholar] [CrossRef]
- Aziz, A.; Zhang, W.; Li, J.; Loukas, A.; McManus, D.P.; Mulvenna, J. Proteomic Characterisation of Echinococcus Granulosus Hydatid Cyst Fluid from Sheep, Cattle and Humans. J. Proteom. 2011, 74, 1560–1572. [Google Scholar] [CrossRef]
- Gao, X.; Yang, Y.; Liu, X.; Xu, F.; Wang, Y.; Liu, L.; Yang, Y.; Liu, M.; Bai, X. Extracellular Vesicles from Trichinella Spiralis: Proteomic Analysis and Protective Immunity. PLoS Negl. Trop. Dis. 2022, 16, e0010528. [Google Scholar] [CrossRef]
- Jiménez, L.; Díaz-Zaragoza, M.; Hernández, M.; Navarro, L.; Hernández-Ávila, R.; Encarnación-Guevara, S.; Ostoa-Saloma, P.; Landa, A. Differential Protein Expression of Taenia Crassiceps ORF Strain in the Murine Cysticercosis Model Using Resistant (C57BL/6) Mice. Pathogens 2023, 12, 678. [Google Scholar] [CrossRef]
- Díaz-Zaragoza, M.; Jiménez, L.L.; Hernández, M.; Hernández-Ávila, R.; Navarro, L.; Ochoa-Sánchez, A.; Encarnación-Guevara, S.; Ostoa-Saloma, P.; Landa, A. Protein Expression Profile of Taenia crassiceps Cysticerci Related to Th1- and Th2-Type Responses in the Mouse Cysticercosis Model. Acta Trop. 2020, 212, 105696. [Google Scholar] [CrossRef]
- Lee, A.Y.Y.; Vlasuk, G.P. Recombinant Nematode Anticoagulant Protein C2 and Other Inhibitors Targeting Blood Coagulation Factor VIIa/Tissue Factor. J. Intern. Med. 2003, 254, 313–321. [Google Scholar] [CrossRef]
- Algaze, S.; Elliott, A.; Walker, P.; Battaglin, F.; Yang, Y.; Millstein, J.; Jayachandran, P.; Arai, H.; Soni, S.; Zhang, W.; et al. Tissue Factor Expression in Colorectal Cancer. J. Clin. Oncol. 2023, 41, 250. [Google Scholar] [CrossRef]
- Kucherlapati, M.H. Mouse Models in Colon Cancer, Inferences, and Implications. iScience 2023, 26, 106958. [Google Scholar] [CrossRef] [PubMed]
- Fleming, J.O.; Weinstock, J.V. Clinical Trials of Helminth Therapy in Autoimmune Diseases: Rationale and Findings. Parasite Immunol. 2015, 37, 277–292. [Google Scholar] [CrossRef] [PubMed]
Pro-Tumorigenic Effects | ||||
---|---|---|---|---|
Infection | ||||
Helminth | Model | Clinical Findings | Molecular Findings | Ref |
Heligmosomoides polygyrus | Mouse AOM/DSS | Accelerated weight loss and higher incidence of tumors. | Upregulation of IL-6 and CXCL1. | [20] |
Schistosoma japonicum | CRC patients | Egg depositions around CRC tumors. | ND | [21,22] |
CRC patients | ND | Upregulation of VEGF and PD-ECGF in CRC tumors. | [23] | |
Schistosoma mansoni | Mouse infection | Distortion of colonic crypts, glandular and mucosal dysplasia, nuclear hyperchromasia, and serration of the surface epithelium. | Upregulation of PTX3, TNF-α, and iNOS. | [24] |
Schistosoma sp | CRC patients | Reduction of overall survival rates. | ND | [25,26] |
Syphacia muris | Rat DMH | Increased epithelial cell proliferation and aberrant crypt formation. | Downregulation of caspase 3 and APC. Upregulation of COX2. | [27] |
Trichuris muris | Mouse infection | Colon hyperplasia, development of aberrant crypts and pre-adenomas, influx of inflammatory cells into the colonic lamina propria. | Upregulation of IL-6, TNF-α, and IFN-γ. | [28] |
Mouse AOM | Increased levels of neoplasia scores. | ND | [28] | |
Mouse APCmin/+ | Accelerated tumor formation in the large intestine. | ND | [28] | |
Helminth-Derived Products | ||||
Helminth | Model | Clinical Findings | Molecular Findings | Ref |
Cooperia curticei (Conditioned medium) | In vitro HT29-D4 (human) | Increased cell proliferation. | ND | [29] |
Heligmosomoides polygyrus (HES) | In vitro CT26 (mouse) | Increased cell migration. | Increased expression of β-catenin. | [29] |
Trichostrongylus colubriformis (Conditioned medium) | In vitro HT29-D4 (human) | Increased cell proliferation. | ND | [30] |
Trichostrongylus vitrinus (Conditioned medium) | In vitro HT29-D4 (human) | Increased cell proliferation. | ND | [29] |
Isolated Molecules | ||||
Helminth | Model | Clinical Findings | Molecular Findings | Ref |
SjE16.7 (Schistosoma japonicum) | AOM/DSS | Increased tumor incidence rate and tumor size. | Increased production of ROS, upregulation of NFκB, IL-6, and TNF-α. Increased FOXP3+ Tregs and decreased CD4+ and CD8+ T cells. | [31] |
Anti-Tumorigenic Effects | ||||
Infection | ||||
Helminth | Model | Clinical Findings | Molecular Findings | Ref |
Taenia crassiceps | AOM/DSS | Reduction in size and number of tumors, low-grade dysplasia, and preservation of goblet cells. | Recruitment of AAMs, downregulation of CXCR2, iNOS, and TNF-α. Upregulation of IL-4. | [32] |
Helminth-Derived Products | ||||
Helminth | Model | Clinical Findings | Molecular Findings | Ref |
Ascaris lumbricoides (ALES) | In vitro HCT116 (human) | Inhibition of cell proliferation. | ND | [33] |
Echinococcus granulosus (HCF) | Syngeneic heterotopic CT26 (mouse) | Reduction in the mean tumor area. | Downregulation of IL-2, TNF-α, and IFN-γ. High levels of IgG. | [34] |
Syngeneic heterotopic CT26 (mouse) | Reduction in tumor incidence. Increased mouse survival. | High production of anti-HCF IgG that recognizes HSP70. | [35] | |
In vitro C26 (mouse) | Cell cycle arrests. | Upregulation of BAX. Downregulation of BCL-2. | [36] | |
In vitro HCT116 (human) | Cell cycle arrests. | Upregulation of BAX. Downregulation of BCL-2. | [36] | |
Heligmosomoides polygyrus (HES) | In vitro CT26 (mouse) | Decreased viable cell counts, reduced DNA synthesis, and reduced mitochondrial activity. | Upregulation of P21 and P53. | [37] |
In vitro HCT116 (human) | Reduced cell viability and DNA synthesis. | Upregulation of P21 and P53. | [37] | |
Nematodirus battus (derived products) | In vitro HT29-D4 (human) | Inhibition of cell proliferation. | ND | [29] |
Schistosoma mansoni (ASMA) | Mouse DMH | Increased overall survival rates. Reduction in the tumor size, the number of neoplastic lesions, and the average lesion size. | Low levels of IL-17. | [38] |
Taenia crassiceps (TcES) | AOM/DSS | Inhibition of colonic tumor formation in 45% of mice. Reduction in tumor size. Normal colon epithelium morphology and maintained normal goblet cell counts. | Downregulation of STAT3, DNMT1, Cyclin D, β-catenin, NFκB, and BCL-2. Reduced levels of IL-1β, IL-17, IL-23, IL-33, CXCR2, and ICAM-1. | [39] |
AOM/DSS | Synergistic effect with 5-FU. Reduced colonic tumor load. | Increased infiltration of NK cells. Reduced expression of MDM2. Upregulation of P53 and P21. | [40] | |
In vitro RKO (human) | Reduced cell proliferation. Formation of colonospheres by reorganizing the actin cytoskeleton. | NFκB downregulation via c-RAF activation. | [39] | |
In vitro RKO and HCT116 (human) | Synergistic effect with 5-FU. | Upregulation of P21 and P53. Decreased expression of YB-1. | [40] | |
Trichinella spiralis (ATSA) | Mouse DMH | Increased overall survival rates. | Low levels of IL-17 | [38] |
Isolated Molecules | ||||
Helminth | Model | Clinical Findings | Molecular Findings | Ref |
rNAPc2 (Initially isolated from Ancylostoma caninum) | Mouse APCmin/+ | Reduced number of tumors. Decreased total tumor area and a lower percentage of adenocarcinomas. | ND | [41] |
Xenograft HCT116 (human) | Synergistic effect with 5-FU and bevacizumab. Tumor volume reduction, reduced angiogenesis, and inhibition of tumor cell proliferation. | ND | [41] | |
Allograft lung metastasis CT26 (mouse) | Reduced lung weight and a lower number of surface metastases. | ND | [41] | |
Xenograft liver metastasis HCT116 (human) | Synergistic effect with CPT-11. Decreased surface metastases in the liver. | ND | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Barrera, C.Á.; Fernandez-Muñoz, K.V.; Mendoza-Rodríguez, M.G.; Ortiz-Melo, M.T.; Carrillo-Pérez, J.A.; Rodríguez-Sosa, M.; Terrazas, L.I. The Impact of Helminths on Colorectal Cancer: From Infections to the Isolation of Biotherapeutics. Pathogens 2025, 14, 949. https://doi.org/10.3390/pathogens14090949
Sánchez-Barrera CÁ, Fernandez-Muñoz KV, Mendoza-Rodríguez MG, Ortiz-Melo MT, Carrillo-Pérez JA, Rodríguez-Sosa M, Terrazas LI. The Impact of Helminths on Colorectal Cancer: From Infections to the Isolation of Biotherapeutics. Pathogens. 2025; 14(9):949. https://doi.org/10.3390/pathogens14090949
Chicago/Turabian StyleSánchez-Barrera, Cuauhtémoc Ángel, Karen V. Fernandez-Muñoz, Mónica G. Mendoza-Rodríguez, María T. Ortiz-Melo, Jazmín A. Carrillo-Pérez, Miriam Rodríguez-Sosa, and Luis I. Terrazas. 2025. "The Impact of Helminths on Colorectal Cancer: From Infections to the Isolation of Biotherapeutics" Pathogens 14, no. 9: 949. https://doi.org/10.3390/pathogens14090949
APA StyleSánchez-Barrera, C. Á., Fernandez-Muñoz, K. V., Mendoza-Rodríguez, M. G., Ortiz-Melo, M. T., Carrillo-Pérez, J. A., Rodríguez-Sosa, M., & Terrazas, L. I. (2025). The Impact of Helminths on Colorectal Cancer: From Infections to the Isolation of Biotherapeutics. Pathogens, 14(9), 949. https://doi.org/10.3390/pathogens14090949