nutrients-logo

Journal Browser

Journal Browser

Iron Homeostasis in Chronic Diseases

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Micronutrients and Human Health".

Deadline for manuscript submissions: 25 November 2025 | Viewed by 2291

Special Issue Editor


E-Mail Website
Guest Editor
School of Medicine, Saint Louis University, St. Louis, MO 63104, USA
Interests: iron metabolism; diabetes; inflammation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Iron, an essential mineral, is involved in critical physiological processes, making iron homeostasis crucial for overall health. Both iron overload and deficiency can lead to a wide range of disease pathogenesis. Recent research has highlighted the importance of iron dysregulation in chronic inflammatory conditions, cardiovascular diseases, neurodegenerative disorders, and cancer. We are pleased to invite the submission of original research, comprehensive reviews, and clinical insights to this Special Issue that shed light on the mechanisms by which altered iron homeostasis impacts the progression of chronic diseases, therapeutic outcomes, and potential treatment strategies. This Special Issue seeks to advance our understanding of the pivotal role that iron plays in chronic disease mechanisms and pave the way for the elucidation of novel diagnostic and therapeutic approaches.

Dr. Jaya Gnana-Prakasam
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • iron homeostasis
  • oxidative stress
  • chronic diseases
  • inflammation
  • ferroptosis
  • ferritinophagy
  • iron chelators
  • neurodegeneration
  • cardiovascular
  • cancer

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

40 pages, 3508 KB  
Review
Iron: More than Meets the Eye
by Ethan R. Naquin, Richa Garg, William J. Chen, Eshani Karmakar, Amogh Prasad, Saicharan Mandadi, Kiran Depala, Jyotsna S. Gopianand and Jaya P. Gnana-Prakasam
Nutrients 2025, 17(18), 2964; https://doi.org/10.3390/nu17182964 - 16 Sep 2025
Abstract
Iron is an essential micronutrient integral to ocular physiology, supporting biochemical processes such as mitochondrial respiration, DNA synthesis and phototransduction. Disruptions in systemic or local iron homeostasis, whether due to overload or deficiency, have been increasingly implicated in the pathogenesis of a broad [...] Read more.
Iron is an essential micronutrient integral to ocular physiology, supporting biochemical processes such as mitochondrial respiration, DNA synthesis and phototransduction. Disruptions in systemic or local iron homeostasis, whether due to overload or deficiency, have been increasingly implicated in the pathogenesis of a broad range of anterior and posterior segment ocular disorders. Iron deficiency may compromise retinal bioenergetics, impair cellular repair, and increase susceptibility to oxidative stress, while iron overload facilitates the generation of reactive oxygen species, contributing to lipid peroxidation, mitochondrial dysfunction, and ferroptosis. Dysregulated iron metabolism has been associated with several ocular pathologies, including age-related macular degeneration, diabetic retinopathy, glaucoma, retinal detachment, cataracts, and anemic retinopathy. The eye possesses specialized iron regulatory mechanisms involving proteins such as transferrin, ferritin, ferroportin, and hepcidin that govern iron transport, storage, and export across ocular barriers. Aberrations in these pathways are now recognized as contributing factors in disease progression. This narrative review explores the complex dual role of iron overload and deficiency in ocular diseases. It highlights the molecular mechanisms underlying iron-mediated pathologies in both the posterior and anterior segments of the eye, along with the clinical manifestations of iron imbalance. Current therapeutic approaches are discussed, including oral and parenteral iron supplementation for deficiency and emerging chelation-based or antioxidant strategies to address iron overload, while highlighting their limitations. Key challenges remain in developing targeted ocular delivery systems that optimize bioavailability and minimize systemic toxicity. Hence, maintaining iron homeostasis is critical for visual function, and further research is needed to refine therapeutic interventions and clarify the mechanistic role of iron in ocular health and disease. Full article
(This article belongs to the Special Issue Iron Homeostasis in Chronic Diseases)
Show Figures

Figure 1

24 pages, 969 KB  
Review
The Interplay Between Iron Metabolism and Insulin Resistance: A Key Factor in Optimizing Obesity Management in Children and Adolescents
by Valeria Calcaterra, Hellas Cena, Federica Bolpagni, Silvia Taranto, Alessandra Vincenti, Nagaia Madini, Marianna Diotti, Antonia Quatrale and Gianvincenzo Zuccotti
Nutrients 2025, 17(7), 1211; https://doi.org/10.3390/nu17071211 - 30 Mar 2025
Cited by 1 | Viewed by 2055
Abstract
Iron plays a vital role in insulin signaling, regulating molecular mechanisms that influence cellular insulin responses. This review explores the link between iron metabolism and insulin resistance (IR) in children and adolescents with obesity. A connection between iron metabolism, iron deficiency (ID), and [...] Read more.
Iron plays a vital role in insulin signaling, regulating molecular mechanisms that influence cellular insulin responses. This review explores the link between iron metabolism and insulin resistance (IR) in children and adolescents with obesity. A connection between iron metabolism, iron deficiency (ID), and IR is well-documented, but further longitudinal studies are needed to better understand how iron metabolism influences insulin resistance during childhood and adolescence. This connection warrants attention due to its significant public health implications, as optimizing obesity management could help prevent both ID and metabolic complications in children. Current evidence does not suggest that dietary factors are primary contributors to ID in children. However, there is scientific evidence that weight reduction can restore iron homeostasis in people with obesity. Therefore, efforts should focus on improving dietary habits, increasing awareness of iron’s importance, and implementing strategies to address both ID and obesity. Full article
(This article belongs to the Special Issue Iron Homeostasis in Chronic Diseases)
Show Figures

Figure 1

Back to TopTop