Structural and Magnetic Properties of Carbon-Based Nanocomposites Containing Iron Oxides: Effect of Thermal Treatment Atmosphere
Abstract
1. Introduction
2. Materials and Methods
2.1. Thermal Annealing of Amorphous Mineral Coal in an Inert Atmosphere
2.2. Synthesis of Carbon-Based Nanocomposites Coated with Iron Oxides
2.3. Sample Characterization
3. Results and Discussion
3.1. Structural Analysis from X-Ray Diffraction
3.2. Electron Microscopy Analysis
3.3. Mössbauer and Raman Spectral Analysis
3.4. Magnetic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agrawal, A. Technological Advancements in Cokemaking. Miner. Process. Extr. Metall. Rev. 2025, 46, 268–283. [Google Scholar] [CrossRef]
- Yadav, R.; Sharma, A.K.; Sharma, S. Advance Development in Natural Graphite Material and Its Applications: A Review. Mining Metall. Explor. 2025, 42, 361–385. [Google Scholar] [CrossRef]
- Bustamante Ortega, P.E.; Molano García, R.E.; Sánchez Maya, O.; López Rodríguez, J.F.; Londoño, T.A. Mineria Del Carbon En Colombia. Transformando El Futuro de La Industria; Ministerio: Bogotá, Colombia, 2021. [Google Scholar]
- Xia, G.; Habibullah; Xie, Q.; Huang, Q.; Ye, M.; Gong, B.; Du, R.; Wang, Y.; Yan, Y.; Chen, Y.; et al. Recent Progress in Carbonaceous Materials for the Hydrogen Cycle: Electrolytic Water Splitting, Hydrogen Storage and Fuel Cells. Chem. Eng. J. 2024, 495, 153405. [Google Scholar] [CrossRef]
- Sereda, G.; Uddin, M.T.; Wente, J. Computational Exploration of Functional Nanoscale Carbonaceous Materials. Curr. Nanosci. 2022, 18, 478–486. [Google Scholar] [CrossRef]
- Hu, S.; Qin, L.; Yi, H.; Lai, C.; Yang, Y.; Li, B.; Fu, Y.; Zhang, M.; Zhou, X. Carbonaceous Materials-Based Photothermal Process in Water Treatment: From Originals to Frontier Applications. Small 2024, 20, 2305579. [Google Scholar] [CrossRef]
- You, P.Y.; Kamarudin, S.K. Recent Progress of Carbonaceous Materials in Fuel Cell Applications: An Overview. Chem. Eng. J. 2017, 309, 489–502. [Google Scholar] [CrossRef]
- Tang, Z.; Zhou, S.; Huang, Y.; Wang, H.; Zhang, R.; Wang, Q.; Sun, D.; Tang, Y.; Wang, H. Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na-Ion Batteries: Origins, Solutions, and Perspectives. Electrochem. Energy Rev. 2023, 6, 8. [Google Scholar] [CrossRef]
- Li, L.; Huang, Y.; Li, Y. Carbonaceous Materials for Electrochemical CO2 Reduction. EnergyChem 2020, 2, 100024. [Google Scholar] [CrossRef]
- Channabasavana Hundi Puttaningaiah, K.P. Innovative Carbonaceous Materials and Metal/Metal Oxide Nanoparticles for Electrochemical Biosensor Applications. Nanomaterials 2024, 14, 1890. [Google Scholar] [CrossRef]
- Văduva, M.; Nila, A.; Udrescu, A.; Cramariuc, O.; Baibarac, M. Nanocomposites Based on Iron Oxide and Carbonaceous Nanoparticles: From Synthesis to Their Biomedical Applications. Materials 2024, 17, 6127. [Google Scholar] [CrossRef]
- Mallakpour, S.; Khadem, E. Carbon Nanotube–Metal Oxide Nanocomposites: Fabrication, Properties and Applications. Chem. Eng. J. 2016, 302, 344–367. [Google Scholar] [CrossRef]
- Yu, S.; Hong Ng, V.M.; Wang, F.; Xiao, Z.; Li, C.; Kong, L.B.; Que, W.; Zhou, K. Synthesis and Application of Iron-Based Nanomaterials as Anodes of Lithium-Ion Batteries and Supercapacitors. J. Mater. Chem. A 2018, 6, 9332–9367. [Google Scholar] [CrossRef]
- Gurudayal; Bassi, P.S.; Sritharan, T.; Wong, L.H. Recent Progress in Iron Oxide Based Photoanodes for Solar Water Splitting. J. Phys. D Appl. Phys. 2018, 51, 473002. [Google Scholar] [CrossRef]
- Ajinkya, N.; Yu, X.; Kaithal, P.; Luo, H.; Somani, P.; Ramakrishna, S. Magnetic Iron Oxide Nanoparticle (IONP) Synthesis to Applications: Present and Future. Materials 2020, 13, 4644. [Google Scholar] [CrossRef]
- Nandhini, G.; Shobana, M.K. Influence of Phytochemicals with Iron Oxide Nanoparticles for Biomedical Applications: A Review. Polym. Bull. 2023, 80, 11715–11758. [Google Scholar] [CrossRef]
- Aragaw, T.A.; Bogale, F.M.; Aragaw, B.A. Iron-Based Nanoparticles in Wastewater Treatment: A Review on Synthesis Methods, Applications, and Removal Mechanisms. J. Saudi Chem. Soc. 2021, 25, 101280. [Google Scholar] [CrossRef]
- Jiao, W.; Shen, W.; Rahman, Z.U.; Wang, D. Recent Progress in Red Semiconductor Photocatalysts for Solar Energy Conversion and Utilization. Nanotechnol. Rev. 2016, 5, 135–145. [Google Scholar] [CrossRef]
- Harak, C.; Satpute, D.; Kadam, V.; Kolhe, N.; Wade, A.; Balgude, S.; Mardikar, S.; Balgude, S.; Pawar, H. Morphology Controlled Fabrication of Fe2O3/GCN Composites: A Comparative Study of Hydrothermal and Sonochemical Synthesis Methods for Efficient Sunlight Driven Photocatalysis for Environmental Remediation. Emergent Mater. 2023, 6, 1797–1807. [Google Scholar] [CrossRef]
- Benedet, M.; Barreca, D.; Rizzi, G.A.; Maccato, C.; Wree, J.-L.; Devi, A.; Gasparotto, A. Fe2O3-Graphitic Carbon Nitride Nanocomposites Analyzed by XPS. Surf. Sci. Spectra 2023, 30, 24021. [Google Scholar] [CrossRef]
- Nikolić, V.N.; Tadić, M.; Panjan, M.; Kopanja, L.; Cvjetićanin, N.; Spasojević, V. Influence of Annealing Treatment on Magnetic Properties of Fe2O3/SiO2 and Formation of ε-Fe2O3 Phase. Ceram. Int. 2017, 43, 3147–3155. [Google Scholar] [CrossRef]
- Brontowiyono, W.; AbdulHussein, W.A.; Smaisim, G.F.; Mahmoud, M.Z.; Singh, S.; Lafta, H.A.; Hussein, S.A.; Kadhim, M.M.; Mustafa, Y.F.; Aravindhan, S. Annealing Temperature Effect on Structural, Magnetic Properties and Methyl Green Degradation of Fe2O3 Nanostructures. Arab. J. Sci. Eng. 2023, 48, 375–382. [Google Scholar] [CrossRef]
- Mansilla, M.V.; Zysler, R.; Fiorani, D.; Suber, L. Annealing Effects on Magnetic Properties of Acicular Hematite Nanoparticles. Phys. B Condens. Matter 2002, 320, 206–209. [Google Scholar] [CrossRef]
- Hua, Y.; Wang, W.; Gao, J.; Li, N.; Qu, Z. A Study on the Effects of Vacuum, Nitrogen, and Air Heat Treatments on Single-Chain Cellulose Based on a Molecular Dynamics Simulation. Forests 2024, 15, 1613. [Google Scholar] [CrossRef]
- Borbón-Nuñez, H.A.; Domínguez, D.; Herrera-Zaldivar, M.; Romo-Herrera, J.M.; Carrillo-Torres, R.C.; Castillón, F.F.; Contreras-López, O.E.; Soto, G.; Tiznado, H. Effect of Inert Ambient Annealing on Structural and Defect Characteristics of Coaxial N-CNTs@ZnO Nanotubes Coated by Atomic Layer Deposition. Ceram. Int. 2022, 48, 29829–29837. [Google Scholar] [CrossRef]
- Nikić, J.; Malcolm, W.; Aleksandra, T.; Marko, Š.; and Agbaba, J. Recent Trends in the Application of Magnetic Nanocomposites for Heavy Metals Removal from Water: A Review. Sep. Sci. Technol. 2024, 59, 293–331. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Silva, A.M.T.; Figueiredo, J.L.; Faria, J.L.; Gomes, H.T. Catalytic Wet Peroxide Oxidation: A Route towards the Application of Hybrid Magnetic Carbon Nanocomposites for the Degradation of Organic Pollutants. A Review. Appl. Catal. B Environ. 2016, 187, 428–460. [Google Scholar] [CrossRef]
- Zhu, M.; Diao, G. Review on the Progress in Synthesis and Application of Magnetic Carbon Nanocomposites. Nanoscale 2011, 3, 2748–2767. [Google Scholar] [CrossRef]
- Slimani, S.; Meneghini, C.; Abdolrahimi, M.; Talone, A.; Murillo, J.P.; Barucca, G.; Yaacoub, N.; Imperatori, P.; Illés, E.; Smari, M.; et al. Spinel Iron Oxide by the Co-Precipitation Method: Effect of the Reaction Atmosphere. Appl. Sci. 2021, 11, 5433. [Google Scholar] [CrossRef]
- Kundu, S.; Sarkar, T.; Ghorai, G.; Sahoo, P.K.; Al-Ahmadi, A.A.; Alghamdi, A.; Bhattacharjee, A. Reaction Atmosphere-Controlled Thermal Conversion of Ferrocene to Hematite and Cementite Nanomaterials—Structural and Spectroscopic Investigations. ACS Omega 2024, 9, 22607–22618. [Google Scholar] [CrossRef]
- Alcalá, M.D.; Real, C. Synthesis Based on the Wet Impregnation Method and Characterization of Iron and Iron Oxide-Silica Nanocomposites. Solid State Ion. 2006, 177, 955–960. [Google Scholar] [CrossRef]
- da Cunha, T.; Maulu, A.; Guillot, J.; Fleming, Y.; Duez, B.; Lenoble, D.; Arl, D. Design of Silica Nanoparticles-Supported Metal Catalyst by Wet Impregnation with Catalytic Performance for Tuning Carbon Nanotubes Growth. Catalysts 2021, 11, 986. [Google Scholar] [CrossRef]
- Vale, A.C.A.R.; Monte, R.S.; Das, A.; de Azevedo, L.A.; Silva, R.B.; Gomes, A.S.L.; Júnior, S.A. Synthesis and Characterization of Hybrid Mesoporous Silica-Iron Oxide Nanocomposite as a Potential Contrast Agent for Photoacoustic Imaging. Next Mater. 2025, 9, 100992. [Google Scholar] [CrossRef]
- ASTM D388-19a; Standard Classification of Coals by Rank. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM D3174-12; Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D3172-13; Standard Practice for Proximate Analysis of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D3175-20; Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D5865/D5865M-19; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D4239-18e1; Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D5373-16; Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2021.
- Varret, F.; Teillet, J. MOSFIT Program. Unpublished work; 2012. [Google Scholar]
- Trucano, P.; Chen, R. Structure of Graphite by Neutron Diffraction. Nature 1975, 258, 136–137. [Google Scholar] [CrossRef]
- Glinnemann, J.; King, H.E., Jr.; Schulz, H.; Hahn, T.; La Placa, S.J.; Dacol, F. Crystal Structures of the Low-Temperature Quartz-Type Phases of SiO2 and GeO2 at Elevated Pressure. Z. Krist.Cryst. Mater. 1992, 198, 177–212. [Google Scholar] [CrossRef]
- Angel, R.J.; McMullan, R.K.; Prewitt, C.T. Substructure and Superstructure of Mullite by Neutron Diffraction. Am. Mineral. 1991, 76, 332–342. [Google Scholar]
- Ruz, P.; Banerjee, S.; Pandey, M.; Sudarsan, V.; Sastry, P.U.; Kshirsagar, R.J. Structural Evolution of Turbostratic Carbon: Implications in H2 Storage. Solid State Sci. 2016, 62, 105–111. [Google Scholar] [CrossRef]
- Blake, R.L.; Hessevick, R.E.; Zoltai, T.; Finger, L.W. Refinement of the Hematite Structure. Am. Mineral. 1966, 51, 123–129. [Google Scholar]
- Lininger, C.N.; Cama, C.A.; Takeuchi, K.J.; Marschilok, A.C.; Takeuchi, E.S.; West, A.C.; Hybertsen, M.S. Energetics of Lithium Insertion into Magnetite, Defective Magnetite, and Maghemite. Chem. Mater. 2018, 30, 7922–7937. [Google Scholar] [CrossRef]
- Cullity, B.D. Elements of X-Ray Diffraction; Addison-Wesley Series in Metallurgy and Materials; Addison-Wesley Publishing Company: Boston, MA, USA, 1978; ISBN 9780201011746. [Google Scholar]
- Vargas, M.A.; Diosa, J.E.; Mosquera, E. Data on Study of Hematite Nanoparticles Obtained from Iron(III) Oxide by the Pechini Method. Data Br. 2019, 25, 104183. [Google Scholar] [CrossRef]
- Bepari, R.A.; Bharali, P.; Das, B.K. Controlled Synthesis of α- and γ-Fe2O3 Nanoparticles via Thermolysis of PVA Gels and Studies on α-Fe2O3 Catalyzed Styrene Epoxidation. J. Saudi Chem. Soc. 2017, 21, S170–S178. [Google Scholar] [CrossRef]
- Lassoued, A.; Dkhil, B.; Gadri, A.; Ammar, S. Control of the Shape and Size of Iron Oxide (α-Fe2O3) Nanoparticles Synthesized through the Chemical Precipitation Method. Results Phys. 2017, 7, 3007–3015. [Google Scholar] [CrossRef]
- Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, S.; Gadri, A. Synthesis, Structural, Morphological, Optical and Magnetic Characterization of Iron Oxide (α-Fe2O3) Nanoparticles by Precipitation Method: Effect of Varying the Nature of Precursor. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 97, 328–334. [Google Scholar] [CrossRef]
- Klika, Z.; Valášková, M.; Bartoňová, L.; Maierová, P. Quantitative Evaluation of Crystalline and Amorphous Phases in Clay-Based Cordierite Ceramic. Minerals 2020, 10, 1122. [Google Scholar] [CrossRef]
- Li, H.; He, M. Calculating the Reference Intensity Ratio of Crystalline Phases with Unknown Atomic Arrangements Using the Lattice Parameters and Chemical Information. J. Appl. Crystallogr. 2023, 56, 1707–1713. [Google Scholar] [CrossRef]
- Uzun, İ. Methods of Determining the Degree of Crystallinity of Polymers with X-Ray Diffraction: A Review. J. Polym. Res. 2023, 30, 394. [Google Scholar] [CrossRef]
- Almeida Gonzalez, H.D.; Hernandez Ojeda, J.; Corcho-Valdés, A.L.; Padron-Ramirez, I.; Perez Cruz, M.; Iriarte-Mesa, C.; Desdin-Garcia, L.F.; Gobbo, P.; Antuch, M. The Promise of Carbon Nano-Onions: Preparation, Characterization and Their Application in Electrochemical Sensing. Anal. Sens. 2025, 5, e202400035. [Google Scholar] [CrossRef]
- Ghalkhani, M.; Khosrowshahi, E.M.; Sohouli, E. Chapter 3—Carbon Nano-Onions: Synthesis, Characterization, and Application. In Micro and Nano Technologies; Thomas, S., Sarathchandran, C., Ilangovan, S.A., Moreno-Piraján, J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 159–207. ISBN 978-0-12-821996-6. [Google Scholar]
- Cudennec, Y.; Lecerf, A. Topotactic Transformations of Goethite and Lepidocrocite into Hematite and Maghemite. Solid State Sci. 2005, 7, 520–529. [Google Scholar] [CrossRef]
- Machala, L.; Tuček, J.; Zbořil, R. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chem. Mater. 2011, 23, 3255–3272. [Google Scholar] [CrossRef]
- Girardet, T.; Diliberto, S.; Carteret, C.; Cleymand, F.; Fleutot, S. Determination of the Percentage of Magnetite in Iron Oxide Nanoparticles: A Comparison between Mössbauer Spectroscopy and Raman Spectroscopy. Solid State Sci. 2023, 143, 107258. [Google Scholar] [CrossRef]
- Sánchez, L.C.; Arboleda, J.D.; Saragovi, C.; Zysler, R.D.; Barrero, C.A. Magnetic and Structural Properties of Pure Hematite Submitted to Mechanical Milling in Air and Ethanol. Phys. B Condens. Matter 2007, 389, 145–149. [Google Scholar] [CrossRef]
- Zickler, G.A.; Smarsly, B.; Gierlinger, N.; Peterlik, H.; Paris, O. A Reconsideration of the Relationship between the Crystallite Size La of Carbons Determined by X-Ray Diffraction and Raman Spectroscopy. Carbon N. Y. 2006, 44, 3239–3246. [Google Scholar] [CrossRef]
- Lyubutin, I.S.; Lin, C.R.; Korzhetskiy, Y.V.; Dmitrieva, T.V.; Chiang, R.K. Mössbauer Spectroscopy and Magnetic Properties of Hematite/Magnetite Nanocomposites. J. Appl. Phys. 2009, 106, 34311. [Google Scholar] [CrossRef]
- Lafta, S.H. Evaluation of Hematite Nanoparticles Weak Ferromagnetism. J. Supercond. Nov. Magn. 2020, 33, 3765–3772. [Google Scholar] [CrossRef]
- Özdemir, Ö.; Dunlop, D.J. Hysteresis and Coercivity of Hematite. J. Geophys. Res. Solid Earth 2014, 119, 2582–2594. [Google Scholar] [CrossRef]
- Sumathirathne, L.; Hasselbrink, C.L.; Hayes, D.; Euler, W.B. Catalytic Thermal Decomposition of NO2 by Iron(III) Nitrate Nonahydrate-Doped Poly(Vinylidene Difluoride). ACS Omega 2022, 7, 43839–43846. [Google Scholar] [CrossRef]
- Bersani, D.; Lottici, P.P.; Montenero, A. Micro-Raman Investigation of Iron Oxide Films and Powders Produced by Sol–Gel Syntheses. J. Raman Spectrosc. 1999, 30, 355–360. [Google Scholar] [CrossRef]
- Hanesch, M. Raman Spectroscopy of Iron Oxides and (Oxy)Hydroxides at Low Laser Power and Possible Applications in Environmental Magnetic Studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Jubb, A.M.; Allen, H.C. Vibrational Spectroscopic Characterization of Hematite, Maghemite, and Magnetite Thin Films Produced by Vapor Deposition. ACS Appl. Mater. Interfaces 2010, 2, 2804–2812. [Google Scholar] [CrossRef]
- Szatkowski, T.; Wysokowski, M.; Lota, G.; Pęziak, D.; Bazhenov, V.V.; Nowaczyk, G.; Walter, J.; Molodtsov, S.L.; Stöcker, H.; Himcinschi, C.; et al. Novel Nanostructured Hematite–Spongin Composite Developed Using an Extreme Biomimetic Approach. RSC Adv. 2015, 5, 79031–79040. [Google Scholar] [CrossRef]
- Vargas, M.A.; Diosa, J.E.; Mosquera, E. The Structural, Optical and Magnetic Property of Iron Oxides Submicron Particles Synthesized by the Pechini Method from Steel Industry Wastes. J. Magn. Magn. Mater. 2020, 513, 167243. [Google Scholar] [CrossRef]
- Rivera, E.; Muñoz-Meneses, R.A.; Marín, L.; Mora, M.; Tabares, J.A.; Manotas-Albor, M.; Rodríguez, L.A.; Diosa, J.E.; Mosquera-Vargas, E. Structural, Optical, and Magnetic Properties of Submicron Hematite (α-Fe2O3) Particles Synthesized from Industrial Steel Waste. Mater. Sci. Eng. B 2023, 288, 116170. [Google Scholar] [CrossRef]
- McCammon, C.A.; De Grave, E.; Pring, A. The Magnetic Structure of Bernalite, Fe(OH)3. J. Magn. Magn. Mater. 1996, 152, 33–39. [Google Scholar] [CrossRef]
- Au-Yeung, S.C.F.; Denes, G.; Greedan, J.E.; Eaton, D.R.; Birchall, T. A Novel Synthetic Route to “Iron Trihydroxide, Fe(OH)3”: Characterization and Magnetic Properties. Inorg. Chem. 1984, 23, 1513–1517. [Google Scholar] [CrossRef]
- Au-Yeung, S.C.F.; Eaton, D.R.; Birchall, T.; Dénès, G.; Greedan, J.E.; Hallett, C.; Ruebenbauer, K. The Preparation and Characterization of Iron Trihydroxide, Fe(OH)3. Can. J. Chem. 1985, 63, 3378–3385. [Google Scholar] [CrossRef]
- Hadadian, Y.; Masoomi, H.; Dinari, A.; Ryu, C.; Hwang, S.; Kim, S.; Cho, B.K.; Lee, J.Y.; Yoon, J. From Low to High Saturation Magnetization in Magnetite Nanoparticles: The Crucial Role of the Molar Ratios Between the Chemicals. ACS Omega 2022, 7, 15996–16012. [Google Scholar] [CrossRef]
- Dubrovskiy, A.A.; Balaev, D.A.; Shaykhutdinov, K.A.; Bayukov, O.A.; Pletnev, O.N.; Yakushkin, S.S.; Bukhtiyarova, G.A.; Martyanov, O.N. Size Effects in the Magnetic Properties of ε-Fe2O3 Nanoparticles. J. Appl. Phys. 2015, 118, 213901. [Google Scholar] [CrossRef]
- Manukyan, K.V.; Chen, Y.-S.; Rouvimov, S.; Li, P.; Li, X.; Dong, S.; Liu, X.; Furdyna, J.K.; Orlov, A.; Bernstein, G.H.; et al. Ultrasmall α-Fe2O3 Superparamagnetic Nanoparticles with High Magnetization Prepared by Template-Assisted Combustion Process. J. Phys. Chem. C 2014, 118, 16264–16271. [Google Scholar] [CrossRef]
- Tadic, M.; Kusigerski, V.; Markovic, D.; Milosevic, I.; Spasojevic, V. High Concentration of Hematite Nanoparticles in a Silica Matrix: Structural and Magnetic Properties. J. Magn. Magn. Mater. 2009, 321, 12–16. [Google Scholar] [CrossRef]
Parameters | VCN 10 | NCN 10 | ACN 10 |
---|---|---|---|
Hematite (α-Fe2O3) | |||
a (Å) | 5.037 ± 0.005 | 5.039 ± 0.004 | 5.039 ± 0.004 |
c (Å) | 13.74 ± 0.06 | 13.7 ± 0.1 | 13.7 ± 0.1 |
V (Å3) | 302 ± 2 | 301 ± 4 | 301 ± 3 |
Crystal System | Rhombohedral | ||
Space Group | R-3 (148) | R-3 (148) | R-3 (148) |
D(104) (nm) | 35.8 ± 0.4 | 21.0 ± 0.3 | 19.9 ± 0.2 |
D(110) (nm) | 39.3 ± 0.5 | 18.9 ± 0.2 | 22.0 ± 0.3 |
Nanocomposite | |||
Crystallinity (%) | 15.0 | 6.5 | 8.0 |
Sample | Phases | IS (mm/s) | QS (mm/s) | BHF (kOe) | RA (%) |
---|---|---|---|---|---|
ACN 10 | -Fe2O3) Fe3+ | 0.291 | −0.251 | 508 | 100 |
VCN 10 | -Fe2O3) Fe3+ | 0.307 | −0.246 | 513 | 93 |
(Fe3O4) Site A (Fe3+) (Fe3O4) Site B (Fe2+, Fe3+) | 0.328 | - | 489 | 2.3 | |
0.568 | - | 460 | 4.6 | ||
NCN 10 | -Fe2O3) Fe3+ | 0.429 | −0.253 | 504 | 70.6 |
(Fe(OH)3) Fe3+ | 0.439 | 0.784 | - | 29.3 |
Sample | Mr (emu/g) ±0.002 | Hc (Oe) | Ms (emu/g) ±0.01 | M’s (emu/g) ±0.1 |
---|---|---|---|---|
ACN 10 | 0.006 | 230.6 (6) | 0.04 | 0.4 |
VCN 10 | 0.702 | 351 (2) | 1.77 | 17.7 |
NCN 10 | 0.015 | 51.7 (1) | 0.24 | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo-Montoya, D.; Millán-Franco, M.A.; Betancourt, J.; Marín, L.; Rodríguez, L.A.; Tabares, J.A.; Manotas-Albor, M.; Magén, C.; Chaur, M.N.; Mosquera-Vargas, E.; et al. Structural and Magnetic Properties of Carbon-Based Nanocomposites Containing Iron Oxides: Effect of Thermal Treatment Atmosphere. Nanomaterials 2025, 15, 1241. https://doi.org/10.3390/nano15161241
Hidalgo-Montoya D, Millán-Franco MA, Betancourt J, Marín L, Rodríguez LA, Tabares JA, Manotas-Albor M, Magén C, Chaur MN, Mosquera-Vargas E, et al. Structural and Magnetic Properties of Carbon-Based Nanocomposites Containing Iron Oxides: Effect of Thermal Treatment Atmosphere. Nanomaterials. 2025; 15(16):1241. https://doi.org/10.3390/nano15161241
Chicago/Turabian StyleHidalgo-Montoya, Daniel, Mario A. Millán-Franco, John Betancourt, Lorena Marín, Luis A. Rodríguez, Jesús A. Tabares, Milton Manotas-Albor, César Magén, Manuel N. Chaur, Edgar Mosquera-Vargas, and et al. 2025. "Structural and Magnetic Properties of Carbon-Based Nanocomposites Containing Iron Oxides: Effect of Thermal Treatment Atmosphere" Nanomaterials 15, no. 16: 1241. https://doi.org/10.3390/nano15161241
APA StyleHidalgo-Montoya, D., Millán-Franco, M. A., Betancourt, J., Marín, L., Rodríguez, L. A., Tabares, J. A., Manotas-Albor, M., Magén, C., Chaur, M. N., Mosquera-Vargas, E., Visbal, R., & Mora, M. (2025). Structural and Magnetic Properties of Carbon-Based Nanocomposites Containing Iron Oxides: Effect of Thermal Treatment Atmosphere. Nanomaterials, 15(16), 1241. https://doi.org/10.3390/nano15161241