Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Measurement and Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mao, J.; Liu, Z.H.; Zhou, J.W.; Zhu, H.T.; Zhang, Q.; Chen, G.; Ren, Z.F. Advances in thermoelectrics. Adv. Phys. 2018, 67, 69–147. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.G.; Dargusch, M.S.; Zou, J. High Performance Thermoelectric Materials: Progress and Their Applications. Adv. Energy Mater. 2017, 8, 1701797–1701824. [Google Scholar] [CrossRef]
- Zhang, X.; Bu, Z.; Lin, S.; Chen, Z.; Li, W.; Pei, Y. GeTe Thermoelectrics. Joule 2020, 4, 986–1003. [Google Scholar] [CrossRef]
- Liu, Z.H.; Gao, W.H.; Zhang, W.H.; Sato, N.; Guo, Q.S.; Mori, T. High Power Factor and Enhanced Thermoelectric Performance in Sc and Bi Codoped GeTe: Insights into the Hidden Role of Rhombohedral Distortion Degree. Adv. Energy Mater. 2020, 10, 202002588–202002597. [Google Scholar] [CrossRef]
- Hong, M.; Lyv, W.Y.; Li, M.; Xu, S.D.; Sun, Q.; Zou, J.; Chen, Z.G. Rashba Effect Maximizes Thermoelectric Performance of GeTe Derivatives. Joule 2020, 4, 2030–2043. [Google Scholar] [CrossRef]
- Srinivasan, B.; Le Tonquesse, S.; Gellé, A.; Bourgès, C.; Monier, L.; Ohkubo, I.; Halet, J.F.; Berthebaud, D.; Mori, T. Screening of transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and rare-earth (La and Pr) elements as potential effective dopants for thermoelectric GeTe—An experimental and theoretical appraisal. J. Mater. Chem. A 2020, 8, 19805–19821. [Google Scholar] [CrossRef]
- Kihoi, S.K.; Shenoy, U.S.; Kahiu, J.N.; Kim, H.; Bhat, D.K.; Lee, H.S. Ultralow Lattice Thermal Conductivity and Enhanced Mechanical Properties of Cu and Sb Co-Doped SnTe Thermoelectric Material with a Complex Microstructure Evolution. ACS Sustain. Chem. Eng. 2022, 10, 1367–1372. [Google Scholar] [CrossRef]
- Huo, H.; Wang, Y.; Xi, L.; Yang, J.; Zhang, W. The variation of intrinsic defects in XTe (X = Ge, Sn, and Pb) induced by the energy positions of valence band maxima. J. Mater. Chem. C 2021, 9, 5765–5770. [Google Scholar] [CrossRef]
- Lei, K.; Huang, H.M.; Liu, X.J.; Wang, W.L.; Guo, K.; Zheng, R.K.; Li, H. Ultra-Low Lattice Thermal Conductivity Enables High Thermoelectric Properties in Cu and Y Codoped SnTe via Multi-Scale Composite Nanostructures. ACS Sustain. Chem. Eng. 2023, 11, 7541–7551. [Google Scholar] [CrossRef]
- Ge, B.Z.; Lee, H.; Im, J.; Choi, Y.; Kim, S.Y.; Lee, J.Y.; Cho, S.P.; Sung, Y.E.; Choi, K.Y.; Zhou, C.J.; et al. Engineering an atomic-level crystal lattice and electronic band structure for an extraordinarily high average thermoelectric figure of merit in n-type PbSe. Energy Environ. Sci. 2023, 16, 3994–4008. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 2011, 3, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Sun, J.; Mao, J.; Zhu, H.; Ren, W.; Zhou, J.; Wang, Z.; Singh, D.J.; Sui, J.; Chu, C.W.; et al. Phase-transition temperature suppression to achieve cubic GeTe and high thermoelectric performance by Bi and Mn codoping. Proc. Natl. Acad. Sci. USA 2018, 115, 5332–5337. [Google Scholar] [CrossRef] [PubMed]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B Condens. Matter 1992, 46, 6131–6140. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X.; Chen, Z.; Lin, S.; Li, W.; Shen, J.; Witting, I.T.; Faghaninia, A.; Chen, Y.; Jain, A.; et al. Low-Symmetry Rhombohedral GeTe Thermoelectrics. Joule 2018, 2, 976–987. [Google Scholar] [CrossRef]
- Lei, K.; Feng, K.m.; Ma, C.; Cai, Z.T.; He, B.b.; Li, H. High power factor and ultra-low lattice thermal conductivity in Sn1−xWxTe alloys via interstitial defects modulation. J. Alloys Compd. 2024, 976, 173187. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, J.; Sun, Z. First principles investigation on anomalous lattice shrinkage of W alloyed rock salt GeTe. J. Phys. Chem. Solids 2020, 137, 109220. [Google Scholar] [CrossRef]
- Zheng, L.; Li, W.; Lin, S.; Li, J.; Chen, Z.; Pei, Y. Interstitial Defects Improving Thermoelectric SnTe in Addition to Band Convergence. ACS Energy Lett. 2017, 2, 563–568. [Google Scholar] [CrossRef]
- Yin, L.C.; Liu, W.D.; Li, M.; Wang, D.Z.; Wu, H.; Wang, Y.F.; Zhang, L.X.; Shi, X.L.; Liu, Q.F.; Chen, Z.G. Interstitial Cu: An Effective Strategy for High Carrier Mobility and High Thermoelectric Performance in GeTe. Adv. Funct. Mater. 2023, 33, 2301750–2301758. [Google Scholar] [CrossRef]
- Xin, J.; Li, S.; Yang, J.; Basit, A.; Long, Q.; Li, S.; Jiang, Q.; Xu, T.; Xiao, B. Tactfully decoupling interdependent electrical parameters via interstitial defects for SnTe thermoelectrics. Nano Energy 2020, 67, 104292. [Google Scholar] [CrossRef]
- Foster, A.S.; Lopez Gejo, F.; Shluger, A.L.; Nieminen, R.M. Vacancy and interstitial defects in hafnia. Phys. Rev. B 2002, 65, 174117. [Google Scholar] [CrossRef]
- Li, H.; Jing, H.; Han, Y.; Lu, G.-Q.; Xu, L.; Liu, T. Interfacial evolution behavior of AgSbTe2.01/nanosilver/Cu thermoelectric joints. Mater. Des. 2016, 89, 604–610. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Lin, S.; Chen, Z.; Pei, Y. Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying. Chem. Mater. 2016, 29, 605–611. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Li, J.; Bu, Z.; Meng, X.; Ang, R.; Li, W. Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. ACS Appl. Mater. Interfaces 2019, 11, 30756–30762. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Wang, D.; Wang, S.; Qin, B.; Wang, Y.; Qin, Y.; Jin, Y.; Chang, C.; Zhao, L.D. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022, 375, 1385–1389. [Google Scholar] [CrossRef] [PubMed]
- Li, M.R.; Ying, P.Z.; Du, Z.L.; Liu, X.L.; Li, X.; Fang, T.; Cui, J.L. Improved Thermoelectric Performance of P-type SnTe through Synergistic Engineering of Electronic and Phonon Transports. ACS Appl. Mater. Interfaces 2022, 14, 8171–8178. [Google Scholar] [CrossRef] [PubMed]
- Xing, T.; Zhu, C.; Song, Q.; Huang, H.; Xiao, J.; Ren, D.; Shi, M.; Qiu, P.; Shi, X.; Xu, F.; et al. Ultralow Lattice Thermal Conductivity and Superhigh Thermoelectric Figure-of-Merit in (Mg, Bi) Co-Doped GeTe. Adv. Mater. 2021, 33, e2008773. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Chen, X.; Mu, E.; Liu, Y.; Che, Z.; Dun, C.; Sun, F.; Wang, X.; Zhang, Y.; Hu, Z. Lattice Strain Enhances Thermoelectric Properties in Sb2Te3/Te Heterostructure. Adv. Electron. Mater. 2019, 6, 1900735. [Google Scholar] [CrossRef]
- Wu, G.J.; Guo, Z.; Wang, R.Y.; Tan, X.J.; Cui, C.; Sun, P.; Hu, H.Y.; Wu, J.H.; Liu, G.Q.; Jiang, J. Structural modulation and resonant level enable high thermoelectric performance of GeTe in the mid-to-low temperature range. J. Mater. Chem. A 2023, 11, 20497–20505. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.Y.; Qiu, Y.T.; Zhao, L.D. Boosting the thermoelectric performance of GeTe by manipulating the phase transition temperature Sb doping. J. Mater. Chem. C 2021, 9, 6484–6490. [Google Scholar] [CrossRef]
- Pei, Q.-X.; Guo, J.-Y.; Suwardi, A.; Zhang, G. Insights into interfacial thermal conductance in Bi2Te3-based systems for thermoelectrics. Mater. Today Phys. 2023, 30, 100953. [Google Scholar] [CrossRef]
- Perumal, S.; Samanta, M.; Ghosh, T.; Shenoy, U.S.; Bohra, A.K.; Bhattacharya, S.; Singh, A.; Waghmare, U.V.; Biswas, K. Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-doping of Bi and In. Joule 2019, 3, 2565–2580. [Google Scholar] [CrossRef]
- Hong, M.; Zou, J.; Chen, Z.G. Thermoelectric GeTe with Diverse Degrees of Freedom Having Secured Superhigh Performance. Adv. Mater. 2019, 31, e1807071. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.H.; Liu, Z.H.; Zhang, W.H.; Sato, N.; Guo, Q.S.; Mori, T. Improved thermoelectric performance of GeTe via efficient yttrium doping. Appl. Phys. Lett. 2021, 118, 033901. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.; Zhu, Y.; Su, L.; Hong, T.; Wang, Z.; Ge, Z.-H.; Qiu, Y.; Zhao, L.-D. Contrasting roles of trivalent dopants M (M = In, Sb, Bi) in enhancing the thermoelectric performance of Ge0.94M0.06Te. Acta Mater. 2023, 252, 118926. [Google Scholar] [CrossRef]
- Li, J.; Li, W.; Bu, Z.; Wang, X.; Gao, B.; Xiong, F.; Chen, Y.; Pei, Y. Thermoelectric Transport Properties of CdxBiyGe1−x−yTe Alloys. ACS Appl. Mater. Interfaces 2018, 10, 39904–39911. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, B.; Gautier, R.; Gucci, F.; Fontaine, B.; Halet, J.-F.; Cheviré, F.; Boussard-Pledel, C.; Reece, M.J.; Bureau, B. Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions. J. Phys. Chem. C 2017, 122, 227–235. [Google Scholar] [CrossRef]
- Xu, L.; Wu, G.; Wang, R.; Yan, Z.; Cai, J.; Yang, J.; Wang, X.; Luo, J.; Tan, X.; Liu, G.; et al. Synergistically Optimized Thermal Conductivity and Carrier Concentration in GeTe by Bi-Se Codoping. ACS Appl. Mater. Interfaces 2022, 14, 14359–14366. [Google Scholar] [CrossRef] [PubMed]
- Shuai, J.; Tan, X.J.; Guo, Q.; Xu, J.T.; Gellé, A.; Gautier, R.; Halet, J.F.; Failamani, F.; Jiang, J.; Mori, T. Enhanced thermoelectric performance through crystal field engineering in transition metal–doped GeTe. Mater. Today Phys. 2019, 9, 100094. [Google Scholar] [CrossRef]
- Rinaldi, C.; Rojas-Sánchez, J.C.; Wang, R.N.; Fu, Y.; Oyarzun, S.; Vila, L.; Bertoli, S.; Asa, M.; Baldrati, L.; Cantoni, M.; et al. Evidence for spin to charge conversion in GeTe(111). APL Mater. 2016, 4, 032501. [Google Scholar] [CrossRef]
- Zheng, Z.; Su, X.; Deng, R.; Stoumpos, C.; Xie, H.; Liu, W.; Yan, Y.; Hao, S.; Uher, C.; Wolverton, C.; et al. Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance. J. Am. Chem. Soc. 2018, 140, 2673–2686. [Google Scholar] [CrossRef] [PubMed]
- Banik, A.; Vishal, B.; Perumal, S.; Datta, R.; Biswas, K. The origin of low thermal conductivity in Sn1−xSbxTe: Phonon scattering via layered intergrowth nanostructures. Energy Environ. Sci. 2016, 9, 2011–2019. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Z.; Zheng, K.; Ma, C.; Fang, Y.; Ma, Y.; Deng, Q.; Li, H. Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe. Nanomaterials 2024, 14, 722. https://doi.org/10.3390/nano14080722
Cai Z, Zheng K, Ma C, Fang Y, Ma Y, Deng Q, Li H. Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe. Nanomaterials. 2024; 14(8):722. https://doi.org/10.3390/nano14080722
Chicago/Turabian StyleCai, Zhengtang, Kaipeng Zheng, Chun Ma, Yu Fang, Yuyang Ma, Qinglin Deng, and Han Li. 2024. "Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe" Nanomaterials 14, no. 8: 722. https://doi.org/10.3390/nano14080722
APA StyleCai, Z., Zheng, K., Ma, C., Fang, Y., Ma, Y., Deng, Q., & Li, H. (2024). Ultra-Low Thermal Conductivity and Improved Thermoelectric Performance in Tungsten-Doped GeTe. Nanomaterials, 14(8), 722. https://doi.org/10.3390/nano14080722