Advanced Porous Nanomaterials: Synthesis, Properties, and Application (Second Edition)

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 5788

Special Issue Editor


E-Mail Website
Guest Editor
ICGM, Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France
Interests: coordination chemistry; nanostructures and nanochemistry; metal-based molecular materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Porous are of scientific and technological importance due to their excellent functional and structural characteristics. They are lightweight materials with pore sizes less than 100 nm with low bulk density and thermal conductivity, a high surface area, good permeability, energy management applications, noise attenuation, and vibration suppression, among others. In recent years, there have been increasing interest and research work in the synthesis, characterization, functionalization, molecular modeling, and design of these materials, which are used in many fields, including in (bio)sensors, drug delivery, gas separation, energy storage, fuel cell technology, nanocatalysis, and photonics.

This Special Issue aims to collect papers on new advances or breakthroughs in the design, synthesis, properties, and applications of porous nanomaterials. We welcome outstanding researchers from all over the world to submit their latest, original, and creative works to the journal before the submission deadline.

Dr. Yannick Guari
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • porous nanomaterials
  • MOFs
  • sensors
  • drug delivery
  • gas separation
  • energy storage
  • fuel cell
  • nanocatalysis
  • photonics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 5129 KiB  
Article
Peroxidase (POD) Mimicking Activity of Different Types of Poly(ethyleneimine)-Mediated Prussian Blue Nanoparticles
by Udara Bimendra Gunatilake, Briza Pérez-López, Maria Urpi, Judit Prat-Trunas, Gerard Carrera-Cardona, Gautier Félix, Saad Sene, Mickaël Beaudhuin, Jean-Charles Dupin, Joachim Allouche, Yannick Guari, Joulia Larionova and Eva Baldrich
Nanomaterials 2025, 15(1), 41; https://doi.org/10.3390/nano15010041 - 29 Dec 2024
Viewed by 1109
Abstract
Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe3+/Fe2+) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration [...] Read more.
Prussian blue nanoparticles (PBNPs) have been identified as a promising candidate for biomimetic peroxidase (POD)-like activity, specifically due to the metal centres (Fe3+/Fe2+) of Prussian blue (PB), which have the potential to function as catalytically active centres. The decoration of PBNPs with desired functional polymers (such as amino- or carboxylate-based) primarily facilitates the subsequent linkage of biomolecules to the nanoparticles for their use in biosensor applications. Thus, the elucidation of the catalytic POD mimicry of these systems is of significant scientific interest but has not been investigated in depth yet. In this report, we studied a series of poly(ethyleneimine) (PEI)-mediated PBNPs (PB/PEI NPs) prepared using various synthesis protocols. The resulting range of particles with varying size (~19–92 nm) and shape combinations were characterised in order to gain insights into their physicochemical properties. The POD-like nanozyme activity of these nanoparticles was then investigated by utilising a 3,3′,5,5′-tetramethylbenzidine (TMB)/H2O2 system, with the catalytic performance of the natural enzyme horseradish peroxidase (HRP) serving as a point of comparison. It was shown that most PB/PEI NPs displayed higher catalytic activity than the PBNPs, with higher activity observed in particles of smaller size, higher Fe content, and higher Fe2+/Fe3+ ratio. Furthermore, the nanoparticles demonstrated enhanced chemical stability in the presence of acid, sodium azide, or high concentrations of H2O2 when compared to HRP, confirming the viability of PB/PEI NPs as a promising nanozymatic material. This study disseminates fundamental knowledge on PB/PEI NPs and their POD-like activities, which will facilitate the selection of an appropriate particle type for future biosensor applications. Full article
Show Figures

Figure 1

17 pages, 2803 KiB  
Article
New Insights on Iron-Trimesate MOFs for Inorganic As(III) and As(V) Adsorption from Aqueous Media
by Afef Azri, Marwa Ben Amar, Khaled Walha, Clàudia Fontàs, José Elías Conde-González, Victoria Salvadó and Eladia M. Peña-Méndez
Nanomaterials 2025, 15(1), 36; https://doi.org/10.3390/nano15010036 - 29 Dec 2024
Cited by 1 | Viewed by 751
Abstract
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive [...] Read more.
Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial Basolite®F300 MOF. Despite their similarities in composition, they exhibit distinct structural characteristics in their porosity, pore size, and surface areas, which affected the adsorption processes. The kinetic data of the adsorption of As(III) and As(V) by both Fe-MOFs fitted the pseudo second-order model well, with the kinetic constant being higher for Basolite®F300 given its higher porosity. Intraparticle diffusion was, in both cases, the rate controlling step with the contribution of film diffusion in the adsorption processes, which achieved equilibrium after 1 h. The maximum adsorption capacity for As(V), 41.66 mg g−1, was obtained with Basolite®F300 at the 6.5–10 pH range, whereas Nano-{Fe-BTC} showed a different behaviour as maximum adsorption (14.99 mg g−1) was obtained at pH 2. However, both adsorbents exhibited the same performance for As(III) adsorption, which is not adsorbed at pH < 9. The Langmuir adsorption isotherm model fitted well for As(III) and As(V) adsorption by Nano-{Fe-BTC} and As(III) by Basolite®F300, whereas the Freundlich model fitted best for As(V) given its superior structural properties. Full article
Show Figures

Figure 1

13 pages, 3051 KiB  
Article
Innovative One-Step Sustainable Process to Produce Simonkolleite Nanoparticles
by Valeria Daniele, Claudia Mondelli, Laura Turilli and Giuliana Taglieri
Nanomaterials 2024, 14(24), 2005; https://doi.org/10.3390/nano14242005 - 13 Dec 2024
Viewed by 698
Abstract
The aim of the present paper is to propose an innovative, one-step and sustainable process allowing us to obtain almost 10 kg/week of pure and crystalline simonkolleite nanoparticles (SK NPs) in only 8 min of reaction, working in water, under ambient conditions of [...] Read more.
The aim of the present paper is to propose an innovative, one-step and sustainable process allowing us to obtain almost 10 kg/week of pure and crystalline simonkolleite nanoparticles (SK NPs) in only 8 min of reaction, working in water, under ambient conditions of pressure/temperature, guaranteeing at the same time low environmental impact and a high yield of NP production. In addition, the obtained NPs can also act as ZnO precursors at ambient temperature, and this result supports the sustainability of the process considering that, generally, the production of ZnO from SK occurred via annealing at high temperatures. The SK NPs appeared pure and crystalline, characterized by a highly uniform hexagonal lamellar feature. Each lamella is composed of an ordered assembly of very small monodispersed primary NPs, with a size in the range 3–8 nm. The SK NPs exhibited a surface area of up to 41 m2/g, the highest value recorded in the literature, revealing that pore size distribution mainly peaked between 3 and 20 nm. Full article
Show Figures

Figure 1

16 pages, 5468 KiB  
Article
Enhancing Methylene Blue Adsorption Performance of Ti3C2Tx@Sodium Alginate Foam Through Pore Structure Regulation
by Yi Hu, Hongwei Wang, Xianliang Ren, Fang Wu, Gaobin Liu, Shufang Zhang, Haijun Luo and Liang Fang
Nanomaterials 2024, 14(23), 1925; https://doi.org/10.3390/nano14231925 - 29 Nov 2024
Cited by 2 | Viewed by 1011
Abstract
Pore structural regulation is expected to be a facile way to enhance the adsorption performance of MXene. In this work, spherical foam composites consisting of Ti3C2Tx and sodium alginate (SA) were synthesized via a vacuum freeze-drying technique. By [...] Read more.
Pore structural regulation is expected to be a facile way to enhance the adsorption performance of MXene. In this work, spherical foam composites consisting of Ti3C2Tx and sodium alginate (SA) were synthesized via a vacuum freeze-drying technique. By varying the solution volume of Ti3C2Tx, four distinct Ti3C2Tx@SA spherical foams with honeycomb-like and lamellar structures with a pore diameter in the range of 100–300 μm were fabricated. Their methylene blue (MB) adsorption performances were then systematically compared. The results revealed that the honeycomb-like porous-structured spherical foams have a significantly higher adsorption capacity than their lamellar counterparts. Notably, the Ti3C2Tx@SA honeycomb-like porous foam exhibited a remarkable maximum adsorption capacity (qm) of 969 mg/g, positioning it at the forefront of MB adsorbent materials. Respective analysis of the adsorption kinetics, thermodynamics, and isotherm model indicated that this MB adsorption of Ti3C2Tx@SA honeycomb-like porous foam is characterized to be a physical, endothermic, and monolayer adsorption. The Ti3C2Tx@SA honeycomb-like porous foam also demonstrated excellent resistance to ion interference and good reusability, further attesting to its substantial potential for practical applications. X-ray photoelectron spectroscopy (XPS) analysis was employed to elucidate the adsorption mechanism, which was found to involve the synergistic effect of electrostatic adsorption and amidation reaction. This work not only offers new avenues for the development of high-performance adsorption materials but also provides crucial insights into the structural design and performance optimization of porous materials. Full article
Show Figures

Graphical abstract

19 pages, 6771 KiB  
Article
Enhancement of the Physical and Mechanical Properties of Cellulose Nanofibril-Reinforced Lignocellulosic Foams for Packaging and Building Applications
by Mara Paulette Alonso, Rakibul Hossain, Maryam El Hajam and Mehdi Tajvidi
Nanomaterials 2024, 14(22), 1837; https://doi.org/10.3390/nano14221837 - 17 Nov 2024
Cited by 2 | Viewed by 1707
Abstract
Biobased foams have the potential to serve as eco-friendly alternatives to petroleum-based foams, provided they achieve comparable thermomechanical and physical properties. We propose a facile approach to fabricate eco-friendly cellulose nanofibril (CNF)-reinforced thermomechanical pulp (TMP) fiber-based foams via an oven-drying process with thermal [...] Read more.
Biobased foams have the potential to serve as eco-friendly alternatives to petroleum-based foams, provided they achieve comparable thermomechanical and physical properties. We propose a facile approach to fabricate eco-friendly cellulose nanofibril (CNF)-reinforced thermomechanical pulp (TMP) fiber-based foams via an oven-drying process with thermal conductivity as low as 0.036 W/(m·K) at a 34.4 kg/m3 density. Acrodur®, iron chloride (FeCl3), and cationic polyacrylamide (CPAM) were used to improve the foam properties. Acrodur® did not have any significant effect on the foamability and density of the foams. Mechanical, thermal, cushioning, and water absorption properties of the foams were dependent on the density and interactions of the additives with the fibers. Due to their high density, foams with CPAM and FeCl3 at a 1% additive dosage had significantly higher compressive properties at the expense of slightly higher thermal conductivity. There was slight increase in compressive properties with the addition of Acrodur®. All additives improved the water stability of the foams, rendering them stable even after 24 h of water absorption. Full article
Show Figures

Figure 1

Back to TopTop