Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Review

13 pages, 320 KiB  
Review
Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment
by Inês M. F. Cardoso, Rita M. F. Cardoso and Joaquim C. G. Esteves da Silva
Nanomaterials 2021, 11(8), 2045; https://doi.org/10.3390/nano11082045 - 11 Aug 2021
Cited by 49 | Viewed by 4268
Abstract
Water quality management will be a priority issue in the near future. Indeed, due to scarcity and/or contamination of the water, regulatory frameworks will be increasingly strict to reduce environmental impacts of wastewater and to allow water to be reused. Moreover, drinking water [...] Read more.
Water quality management will be a priority issue in the near future. Indeed, due to scarcity and/or contamination of the water, regulatory frameworks will be increasingly strict to reduce environmental impacts of wastewater and to allow water to be reused. Moreover, drinking water quality standards must be improved in order to account for the emerging pollutants that are being detected in tap water. These tasks can only be achieved if new improved and sustainable water treatment technologies are developed. Nanomaterials are improving the ongoing research on advanced oxidation processes (AOPs). This work reviews the most important AOPs, namely: persulfate, chlorine and NH2Cl based processes, UV/H2O2, Fenton processes, ozone, and heterogeneous photocatalytic processes. A critical review of the current coupling of nanomaterials to some of these AOPs is presented. Besides the active role of the nanomaterials in the degradation of water contaminants/pollutants in the AOPs, the relevance of their adsorbent/absorbent function in these processes is also discussed. Full article
19 pages, 2331 KiB  
Review
The Contribution of NMR Spectroscopy in Understanding Perovskite Stabilization Phenomena
by Federica Aiello and Sofia Masi
Nanomaterials 2021, 11(8), 2024; https://doi.org/10.3390/nano11082024 - 8 Aug 2021
Cited by 11 | Viewed by 6435
Abstract
Although it has been exploited since the late 1900s to study hybrid perovskite materials, nuclear magnetic resonance (NMR) spectroscopy has only recently received extraordinary research attention in this field. This very powerful technique allows the study of the physico-chemical and structural properties of [...] Read more.
Although it has been exploited since the late 1900s to study hybrid perovskite materials, nuclear magnetic resonance (NMR) spectroscopy has only recently received extraordinary research attention in this field. This very powerful technique allows the study of the physico-chemical and structural properties of molecules by observing the quantum mechanical magnetic properties of an atomic nucleus, in solution as well as in solid state. Its versatility makes it a promising technique either for the atomic and molecular characterization of perovskite precursors in colloidal solution or for the study of the geometry and phase transitions of the obtained perovskite crystals, commonly used as a reference material compared with thin films prepared for applications in optoelectronic devices. This review will explore beyond the current focus on the stability of perovskites (3D in bulk and nanocrystals) investigated via NMR spectroscopy, in order to highlight the chemical flexibility of perovskites and the role of interactions for thermodynamic and moisture stabilization. The exceptional potential of the vast NMR tool set in perovskite structural characterization will be discussed, aimed at choosing the most stable material for optoelectronic applications. The concept of a double-sided characterization in solution and in solid state, in which the organic and inorganic structural components provide unique interactions with each other and with the external components (solvents, additives, etc.), for material solutions processed in thin films, denotes a significant contemporary target. Full article
(This article belongs to the Special Issue Stable Perovskite Materials: From Synthesis to Optoelectronic Devices)
Show Figures

Figure 1

40 pages, 7120 KiB  
Review
A Review of Self-Seeded Germanium Nanowires: Synthesis, Growth Mechanisms and Potential Applications
by Adrià Garcia-Gil, Subhajit Biswas and Justin D. Holmes
Nanomaterials 2021, 11(8), 2002; https://doi.org/10.3390/nano11082002 - 4 Aug 2021
Cited by 8 | Viewed by 4047
Abstract
Ge nanowires are playing a big role in the development of new functional microelectronic modules, such as gate-all-around field-effect transistor devices, on-chip lasers and photodetectors. The widely used three-phase bottom-up growth method utilising a foreign catalyst metal or metalloid is by far the [...] Read more.
Ge nanowires are playing a big role in the development of new functional microelectronic modules, such as gate-all-around field-effect transistor devices, on-chip lasers and photodetectors. The widely used three-phase bottom-up growth method utilising a foreign catalyst metal or metalloid is by far the most popular for Ge nanowire growth. However, to fully utilise the potential of Ge nanowires, it is important to explore and understand alternative and functional growth paradigms such as self-seeded nanowire growth, where nanowire growth is usually directed by the in situ-formed catalysts of the growth material, i.e., Ge in this case. Additionally, it is important to understand how the self-seeded nanowires can benefit the device application of nanomaterials as the additional metal seeding can influence electron and phonon transport, and the electronic band structure in the nanomaterials. Here, we review recent advances in the growth and application of self-seeded Ge and Ge-based binary alloy (GeSn) nanowires. Different fabrication methods for growing self-seeded Ge nanowires are delineated and correlated with metal seeded growth. This review also highlights the requirement and advantage of self-seeded growth approach for Ge nanomaterials in the potential applications in energy storage and nanoelectronic devices. Full article
Show Figures

Figure 1

34 pages, 2073 KiB  
Review
Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages
by Alba Pensado-López, Juan Fernández-Rey, Pedro Reimunde, José Crecente-Campo, Laura Sánchez and Fernando Torres Andón
Nanomaterials 2021, 11(7), 1784; https://doi.org/10.3390/nano11071784 - 9 Jul 2021
Cited by 19 | Viewed by 6441
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of [...] Read more.
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage–nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases. Full article
Show Figures

Graphical abstract

13 pages, 1056 KiB  
Review
Nanomaterial Databases: Data Sources for Promoting Design and Risk Assessment of Nanomaterials
by Zuowei Ji, Wenjing Guo, Sugunadevi Sakkiah, Jie Liu, Tucker A. Patterson and Huixiao Hong
Nanomaterials 2021, 11(6), 1599; https://doi.org/10.3390/nano11061599 - 18 Jun 2021
Cited by 23 | Viewed by 5547
Abstract
Nanomaterials have drawn increasing attention due to their tunable and enhanced physicochemical and biological performance compared to their conventional bulk materials. Owing to the rapid expansion of the nano-industry, large amounts of data regarding the synthesis, physicochemical properties, and bioactivities of nanomaterials have [...] Read more.
Nanomaterials have drawn increasing attention due to their tunable and enhanced physicochemical and biological performance compared to their conventional bulk materials. Owing to the rapid expansion of the nano-industry, large amounts of data regarding the synthesis, physicochemical properties, and bioactivities of nanomaterials have been generated. These data are a great asset to the scientific community. However, the data are on diverse aspects of nanomaterials and in different sources and formats. To help utilize these data, various databases on specific information of nanomaterials such as physicochemical characterization, biomedicine, and nano-safety have been developed and made available online. Understanding the structure, function, and available data in these databases is needed for scientists to select appropriate databases and retrieve specific information for research on nanomaterials. However, to our knowledge, there is no study to systematically compare these databases to facilitate their utilization in the field of nanomaterials. Therefore, we reviewed and compared eight widely used databases of nanomaterials, aiming to provide the nanoscience community with valuable information about the specific content and function of these databases. We also discuss the pros and cons of these databases, thus enabling more efficient and convenient utilization. Full article
(This article belongs to the Special Issue Nanomaterials for Biomedical Applications)
Show Figures

Figure 1

30 pages, 7929 KiB  
Review
Recent Advances in Transition Metal Dichalcogenide Cathode Materials for Aqueous Rechargeable Multivalent Metal-Ion Batteries
by Vo Pham Hoang Huy, Yong Nam Ahn and Jaehyun Hur
Nanomaterials 2021, 11(6), 1517; https://doi.org/10.3390/nano11061517 - 8 Jun 2021
Cited by 25 | Viewed by 7024
Abstract
The generation of renewable energy is a promising solution to counter the rapid increase in energy consumption. Nevertheless, the availability of renewable resources (e.g., wind, solar, and tidal) is non-continuous and temporary in nature, posing new demands for the production of next-generation large-scale [...] Read more.
The generation of renewable energy is a promising solution to counter the rapid increase in energy consumption. Nevertheless, the availability of renewable resources (e.g., wind, solar, and tidal) is non-continuous and temporary in nature, posing new demands for the production of next-generation large-scale energy storage devices. Because of their low cost, highly abundant raw materials, high safety, and environmental friendliness, aqueous rechargeable multivalent metal-ion batteries (AMMIBs) have recently garnered immense attention. However, several challenges hamper the development of AMMIBs, including their narrow electrochemical stability, poor ion diffusion kinetics, and electrode instability. Transition metal dichalcogenides (TMDs) have been extensively investigated for applications in energy storage devices because of their distinct chemical and physical properties. The wide interlayer distance of layered TMDs is an appealing property for ion diffusion and intercalation. This review focuses on the most recent advances in TMDs as cathode materials for aqueous rechargeable batteries based on multivalent charge carriers (Zn2+, Mg2+, and Al3+). Through this review, the key aspects of TMD materials for high-performance AMMIBs are highlighted. Furthermore, additional suggestions and strategies for the development of improved TMDs are discussed to inspire new research directions. Full article
(This article belongs to the Special Issue Nanomaterials for Ion Battery Applications)
Show Figures

Graphical abstract

28 pages, 5785 KiB  
Review
Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review
by Chenxin Lyu, Peng Zhao, Jun Xie, Shuyuan Dong, Jiawei Liu, Chengchen Rao and Jianzhong Fu
Nanomaterials 2021, 11(6), 1501; https://doi.org/10.3390/nano11061501 - 6 Jun 2021
Cited by 61 | Viewed by 7054
Abstract
Air pollution caused by particulate matter and toxic gases is violating individual’s health and safety. Nanofibrous membrane, being a reliable filter medium for particulate matter, has been extensively studied and applied in the field of air purification. Among the different fabrication approaches of [...] Read more.
Air pollution caused by particulate matter and toxic gases is violating individual’s health and safety. Nanofibrous membrane, being a reliable filter medium for particulate matter, has been extensively studied and applied in the field of air purification. Among the different fabrication approaches of nanofibrous membrane, electrospinning is considered as the most favorable and effective due to its advantages of controllable process, high production efficiency, and low cost. The electrospun membranes, made of different materials and unique structures, exhibit good PM2.5 filtration performance and multi-functions, and are used as masks and filters against PM2.5. This review presents a brief overview of electrospinning techniques, different structures of electrospun nanofibrous membranes, unique characteristics and functions of the fabricated membranes, and summarization of the outdoor and indoor applications in PM filtration. Full article
Show Figures

Figure 1

30 pages, 12212 KiB  
Review
Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour
by Olena Okhay and Alexander Tkach
Nanomaterials 2021, 11(5), 1240; https://doi.org/10.3390/nano11051240 - 8 May 2021
Cited by 64 | Viewed by 7344
Abstract
Thanks to the advanced technologies for energy generation such as solar cells and thermo- or piezo-generators the amount of electricity transformed from light, heat or mechanical pressure sources can be significantly enhanced. However, there is still a demand for effective storage devices to [...] Read more.
Thanks to the advanced technologies for energy generation such as solar cells and thermo- or piezo-generators the amount of electricity transformed from light, heat or mechanical pressure sources can be significantly enhanced. However, there is still a demand for effective storage devices to conserve electrical energy which addresses the wide range of large stationary applications from electric vehicles to small portable devices. Among the large variety of energy-storage systems available today, electrochemical energy sources and, in particular, supercapacitors (SC), are rather promising in terms of cost, scaling, power management, life cycle and safety. Therefore, this review surveys recent achievements in the development of SC based on composites of such carbon-derived materials as graphene (G) and reduced graphene oxide (rGO) with carbon nanotubes (CNT). Various factors influencing the specific capacitance are discussed, while specific energy and power as well as cycling stability of SC with G/rGO-CNT composite electrode materials are overviewed. Full article
(This article belongs to the Special Issue Ceramics and Nanostructures for Energy Harvesting and Storage)
Show Figures

Figure 1

31 pages, 22082 KiB  
Review
Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors
by Fei Han, Min Li, Huaiyu Ye and Guoqi Zhang
Nanomaterials 2021, 11(5), 1220; https://doi.org/10.3390/nano11051220 - 5 May 2021
Cited by 41 | Viewed by 6914
Abstract
With the recent great progress made in flexible and wearable electronic materials, the upcoming next generation of skin-mountable and implantable smart devices holds extensive potential applications for the lifestyle modifying, including personalized health monitoring, human-machine interfaces, soft robots, and implantable biomedical devices. As [...] Read more.
With the recent great progress made in flexible and wearable electronic materials, the upcoming next generation of skin-mountable and implantable smart devices holds extensive potential applications for the lifestyle modifying, including personalized health monitoring, human-machine interfaces, soft robots, and implantable biomedical devices. As a core member within the wearable electronics family, flexible strain sensors play an essential role in the structure design and functional optimization. To further enhance the stretchability, flexibility, sensitivity, and electricity performances of the flexible strain sensors, enormous efforts have been done covering the materials design, manufacturing approaches and various applications. Thus, this review summarizes the latest advances in flexible strain sensors over recent years from the material, application, and manufacturing strategies. Firstly, the critical parameters measuring the performances of flexible strain sensors and materials development contains different flexible substrates, new nano- and hybrid- materials are introduced. Then, the developed working mechanisms, theoretical analysis, and computational simulation are presented. Next, based on different material design, diverse applications including human motion detection and health monitoring, soft robotics and human-machine interface, implantable devices, and biomedical applications are highlighted. Finally, synthesis consideration of the massive production industry of flexible strain sensors in the future; different fabrication approaches that are fully expected are classified and discussed. Full article
Show Figures

Figure 1

37 pages, 2397 KiB  
Review
Gold Nanoparticles Synthesis and Antimicrobial Effect on Fibrous Materials
by Behnaz Mehravani, Ana Isabel Ribeiro and Andrea Zille
Nanomaterials 2021, 11(5), 1067; https://doi.org/10.3390/nano11051067 - 21 Apr 2021
Cited by 39 | Viewed by 4803
Abstract
Depositing nanoparticles in textiles have been a promising strategy to achieve multifunctional materials. Particularly, antimicrobial properties are highly valuable due to the emergence of new pathogens and the spread of existing ones. Several methods have been used to functionalize textile materials with gold [...] Read more.
Depositing nanoparticles in textiles have been a promising strategy to achieve multifunctional materials. Particularly, antimicrobial properties are highly valuable due to the emergence of new pathogens and the spread of existing ones. Several methods have been used to functionalize textile materials with gold nanoparticles (AuNPs). Therefore, this review highlighted the most used methods for AuNPs preparation and the current studies on the topic in order to obtain AuNPs with suitable properties for antimicrobial applications and minimize the environmental concerns in their production. Reporting the detailed information on the functionalization of fabrics, yarns, and fibers with AuNPs by different methods to improve the antimicrobial properties was the central objective. The studies combining AuNPs and textile materials have opened valuable opportunities to develop antimicrobial materials for health and hygiene products, as infection control and barrier material, with improved properties. Future studies are needed to amplify the antimicrobial effect of AuNPs onto textiles and minimize the concerns related to the synthesis. Full article
Show Figures

Figure 1

17 pages, 3310 KiB  
Review
Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
by Lei Hou, Philippe Tamarat and Brahim Lounis
Nanomaterials 2021, 11(4), 1058; https://doi.org/10.3390/nano11041058 - 20 Apr 2021
Cited by 22 | Viewed by 6048
Abstract
Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photovoltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. [...] Read more.
Lead-halide perovskite nanocrystals (NCs) are attractive nano-building blocks for photovoltaics and optoelectronic devices as well as quantum light sources. Such developments require a better knowledge of the fundamental electronic and optical properties of the band-edge exciton, whose fine structure has long been debated. In this review, we give an overview of recent magneto-optical spectroscopic studies revealing the entire excitonic fine structure and relaxation mechanisms in these materials, using a single-NC approach to get rid of their inhomogeneities in morphology and crystal structure. We highlight the prominent role of the electron-hole exchange interaction in the order and splitting of the bright triplet and dark singlet exciton sublevels and discuss the effects of size, shape anisotropy and dielectric screening on the fine structure. The spectral and temporal manifestations of thermal mixing between bright and dark excitons allows extracting the specific nature and strength of the exciton–phonon coupling, which provides an explanation for their remarkably bright photoluminescence at low temperature although the ground exciton state is optically inactive. We also decipher the spectroscopic characteristics of other charge complexes whose recombination contributes to photoluminescence. With the rich knowledge gained from these experiments, we provide some perspectives on perovskite NCs as quantum light sources. Full article
(This article belongs to the Special Issue Nanocrystals: Synthesis, Properties and Applications)
Show Figures

Figure 1

Other

21 pages, 2238 KiB  
Systematic Review
In Vitro Toxicological Insights from the Biomedical Applications of Iron Carbide Nanoparticles in Tumor Theranostics: A Systematic Review and Meta-Analysis
by Maria Antoniou, Georgia Melagraki, Iseult Lynch and Antreas Afantitis
Nanomaterials 2024, 14(9), 734; https://doi.org/10.3390/nano14090734 - 23 Apr 2024
Viewed by 702
Abstract
(1) Background: Despite the encouraging indications regarding the suitability (biocompatibility) of iron carbide nanoparticles (ICNPs) in various biomedical applications, the published evidence of their biosafety is dispersed and relatively sparse. The present review synthesizes the existing nanotoxicological data from in vitro studies relevant [...] Read more.
(1) Background: Despite the encouraging indications regarding the suitability (biocompatibility) of iron carbide nanoparticles (ICNPs) in various biomedical applications, the published evidence of their biosafety is dispersed and relatively sparse. The present review synthesizes the existing nanotoxicological data from in vitro studies relevant to the diagnosis and treatment of cancer. (2) Methods: A systematic review was performed in electronic databases (PubMed, Scopus, and Wiley Online Library) on December 2023, searching for toxicity assessments of ICNPs of different sizes, coatings, and surface modifications investigated in immortalized human and murine cell lines. The risk of bias in the studies was assessed using the ToxRTool for in vitro studies. (3) Results: Among the selected studies (n = 22), cell viability emerged as the most frequently assessed cellular-level toxicity endpoint. The results of the meta-analysis showed that cell models treated with ICNPs had a reduced cell viability (SMD = −2.531; 95% CI: −2.959 to −2.109) compared to untreated samples. A subgroup analysis was performed due to the high magnitude of heterogeneity (I2 = 77.1%), revealing that ICNP concentration and conjugated ligands are the factors that largely influence toxicity (p < 0.001). (4) Conclusions: A dose-dependent cytotoxicity of ICNP exposure was observed, regardless of the health status of the cell, tested organism, and NP size. Inconsistent reporting of ICNP physicochemical properties was noted, which hinders comparability among the studies. A comprehensive exploration of the available in vivo studies is required in future research to assess the safety of ICNPs’ use in bioimaging and cancer treatment. Full article
Show Figures

Figure 1

Back to TopTop