molecules-logo

Journal Browser

Journal Browser

Small Fish Models for Molecular-Ethnopharmacology and Drug Discovery

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Medicinal Chemistry".

Deadline for manuscript submissions: 31 May 2026 | Viewed by 314

Special Issue Editor


E-Mail Website
Guest Editor
Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
Interests: zebrafish; pharmacology; obesity; cancer; natural product; chemical screening
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Small fish species such as Danio rerio (zebrafish), Oryzias latipes (medaka), and other emerging model fish have become powerful vertebrate systems bridging the gap between molecular pharmacology, toxicology, and ethnopharmacological discovery. Their small size, genetic accessibility, optical transparency, and physiological similarity to humans enable high-throughput in vivo screening and mechanistic validation of bioactive natural compounds, traditional medicines, and novel drug candidates.

This Special Issue aims to highlight recent advances and applications of small fish models in molecular ethnopharmacology and drug discovery. Topics of interest include—but are not limited to—bioassay-guided identification of active principles from traditional remedies, elucidation of signaling pathways underlying pharmacological effects, metabolomic profiling of compound action, and the development of biosensor or disease-model fish for in vivo functional screening. Integrative studies combining modern omics, imaging, behavioral assays, and computational approaches are particularly encouraged.

By collecting cutting-edge research and reviews at the intersection of ethnomedicine, natural product chemistry, and small-fish biotechnology, this Special Issue seeks to accelerate the translation of traditional knowledge into scientifically validated therapeutics and to contribute to sustainable drug discovery pipelines.

Dr. Yasuhito Shimada
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • chemical biology
  • natural product screening
  • omics
  • phytochemicals
  • systems pharmacology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2080 KB  
Article
Hydrolyzed Milk-Derived Peptides Promote Erythropoietin Pathways and Hematologic Recovery: A Cross-Species Analysis
by Liqing Zang, Akira Yokota, Misa Nakai, Kazutake Fukada, Norihiro Nishimura and Yasuhito Shimada
Molecules 2025, 30(24), 4739; https://doi.org/10.3390/molecules30244739 - 11 Dec 2025
Viewed by 164
Abstract
Anemia, characterized by reduced hemoglobin (Hb), remains a major health concern. Although iron and erythropoietin (EPO) therapies are effective, limitations in safety and accessibility have prompted interest in nutritional alternatives. Hydrolyzed milk-derived peptides (H-MDPs) contain bioactive sequences with diverse physiological effects, yet their [...] Read more.
Anemia, characterized by reduced hemoglobin (Hb), remains a major health concern. Although iron and erythropoietin (EPO) therapies are effective, limitations in safety and accessibility have prompted interest in nutritional alternatives. Hydrolyzed milk-derived peptides (H-MDPs) contain bioactive sequences with diverse physiological effects, yet their role in erythropoiesis remains poorly defined. This study investigated the hematopoietic actions of H-MDP using zebrafish and mouse models. Adult zebrafish underwent phlebotomy-induced anemia and received oral H-MDP for 3 weeks. Hb levels, erythrocyte morphology, and expression of erythropoiesis- and iron-metabolism genes were assessed. In healthy mice, renal Epo expression, circulating EPO, and serum cytokines were measured after 2 weeks of H-MDP administration. H-MDP significantly accelerated Hb recovery in anemic zebrafish (4.6 ± 0.64 g/dL vs. 3.4 ± 0.66 g/dL in untreated fish at week 1) and markedly improved erythrocyte maturation. These effects coincided with strong induction of epo, hif1aa/b, igf1, csf1a, and csf3b in the heart and liver, as well as normalization of anemia-induced hepatic iron-transport genes (tfa, fpn1, tfr2) and reactivation of hamp. In mice, H-MDP elevated renal Epo mRNA and circulating EPO (approximately 2.3-fold) without altering steady-state Hb, and cytokine profiling with IPA-predicted activation of the erythropoietin signaling pathway. Collectively, these findings indicate that H-MDPs modulate erythropoiesis by coordinating the activation of EPO-related and iron-regulatory networks, supporting their potential as functional food ingredients for hematologic recovery and anemia management. Full article
(This article belongs to the Special Issue Small Fish Models for Molecular-Ethnopharmacology and Drug Discovery)
Show Figures

Figure 1

Back to TopTop