molecules-logo

Journal Browser

Journal Browser

Molecular Simulation in Interface and Surfactant—2nd Edition

A special issue of Molecules (ISSN 1420-3049).

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 2243

Special Issue Editors

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Interests: physical chemistry of surfactant; computer simulation about surface science; molecular simulation on self-assemble system
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Molecular simulation is a powerful research method that has achieved great success in the field of colloid and interface chemistry in recent years. It helps us understand the thermodynamics, dynamics, and microlevel structure of colloidal systems and interfacial phenomena.

During the practical application of molecular simulation in this field, many challenging problems have been encountered, including system size, the time scale that molecular simulation can reach, the accuracy of simulation results, etc. Fortunately, many advanced simulation techniques, such as coarse-grained models, enhanced sampling methods, and high-precision molecular force fields have been proposed to address these challenges. It has been over two years since we first launched the Special Issue “Molecular Simulation in Interface and Surfactant”. Significant progress has been made in both molecular simulation and colloid and interface chemistry in this period, so we see this as a great opportunity to launch a second edition.

We welcome research articles and reviews on the application of molecular simulation in the field of colloid and interface chemistry in this Special Issue.

Dr. Heng Zhang
Prof. Dr. Shiling Yuan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular simulation
  • interfaces
  • membranes
  • surfactants
  • colloids

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 4002 KiB  
Article
Valsartan/2-Aminopyridine Co-Amorphous System: Preparation, Characterization, and Supramolecular Structure Simulation by Density Functional Theory Calculation
by Linjie Wang, Chunan Du, Yang Yang, Pengtu Zhang and Shiling Yuan
Molecules 2024, 29(22), 5467; https://doi.org/10.3390/molecules29225467 - 20 Nov 2024
Viewed by 674
Abstract
The objective of this work was to improve the solubility and discover a stable co-amorphous form of valsartan (VAL), a BCS class-II drug, by utilizing small molecule 2-Aminopyridine (2-AP) in varying molar ratios (2:1, 1:1, and 1:2), employing a solvent evaporation technique. Additionally, [...] Read more.
The objective of this work was to improve the solubility and discover a stable co-amorphous form of valsartan (VAL), a BCS class-II drug, by utilizing small molecule 2-Aminopyridine (2-AP) in varying molar ratios (2:1, 1:1, and 1:2), employing a solvent evaporation technique. Additionally, by way of a density functional theory (DFT)-based computational method with commercially available software, a new approach for determining the intermolecular connectivity of multi-molecular hydrogen bonding systems was proposed. The binary systems’ features were characterized by PXRD, DSC, FTIR, and Raman spectroscopy, while the equilibrium solubility and dissolution was determined in 0.1 N HCL and water conditions to investigate the dissolution advantage of the prepared co-amorphous systems. The results demonstrated that the co-amorphous system was successfully prepared in VAL/2-AP with a 1:2 molar ratio following solvent evaporation, whereby the hydrogen bonding sites of VAL were fully occupied. Physical stability studies were carried out under dry conditions at room temperature for 6 months. Furthermore, four possible ternary systems were constructed, and their vibrational modes were simulated by DFT calculations. The calculated infrared spectra of the four configurations varied widely, with trimer 1 showing the most resemblance to the experimental spectrum of the co-amorphous 1:2 system. Additionally, co-amorphous VAL/2-AP displayed significant improvement in the solubility and dissolution study. Notably, in the 1:2 ratio, there was almost a 4.5-fold and 15.6-fold increase in VAL’s solubility in 0.1 N HCL and water environments, respectively. In conclusion, our findings highlight the potential of co-amorphous systems as a feasible approach to improving the properties and bioavailabilities of insoluble drugs. The proposed simulation method provides valuable insights into determining the supramolecular structure of multi-molecular hydrogen bonding systems, offering a novel perspective for investigating such systems. Full article
(This article belongs to the Special Issue Molecular Simulation in Interface and Surfactant—2nd Edition)
Show Figures

Graphical abstract

14 pages, 6096 KiB  
Article
The Effect of Different Substances Embedded in Fullerene Cavity on Surfactant Self-Assembly Behavior through Molecular Dynamics Simulation
by Xin Li, Yongkang Jiang, Yaoyao Wei, Yulu Wang, Xinqi Zhu, Guokui Liu and Qiying Xia
Molecules 2024, 29(10), 2355; https://doi.org/10.3390/molecules29102355 - 16 May 2024
Viewed by 844
Abstract
Fullerene-based amphiphiles are new types of monomers that form self-assemblies with profound applications. The conical fullerene amphiphiles (CFAs) have attracted attention for their uniquely self-assembled structures and have opened up a new field for amphiphile research. The CFAs and CFAs with different substances [...] Read more.
Fullerene-based amphiphiles are new types of monomers that form self-assemblies with profound applications. The conical fullerene amphiphiles (CFAs) have attracted attention for their uniquely self-assembled structures and have opened up a new field for amphiphile research. The CFAs and CFAs with different substances embedded in cavities are designed and their self-assembly behaviors are investigated using molecular dynamics (MD) simulations. The surface and internal structures of the micelles are analyzed from various perspectives, including micelle size, shape, and solvent-accessible surface area (SASA). The systems studied are all oblate micelles. In comparison, embedding Cl or embedding Na+ in the cavities results in larger micelles and a larger deviation from the spherical shape. Two typical configurations of fullerene surfactant micelles, quadrilateral plane and tetrahedral structure, are presented. The dipole moments of the fullerene molecules are also calculated, and the results show that the embedded negatively charged Cl leads to a decrease in the polarity of the pure fullerene molecules, while the embedded positively charged Na+ leads to an increase. Full article
(This article belongs to the Special Issue Molecular Simulation in Interface and Surfactant—2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

27 pages, 4058 KiB  
Review
NMR and MD Simulations of Non-Ionic Surfactants
by Gerd Buntkowsky and Markus Hoffmann
Molecules 2025, 30(2), 309; https://doi.org/10.3390/molecules30020309 - 14 Jan 2025
Viewed by 248
Abstract
Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear [...] Read more.
Non-ionic surfactants are an important solvent in the field of green chemistry with tremendous application potential. Understanding their phase properties in bulk or in confined environments is of high commercial value. In recent years, the combination of molecular dynamics (MD) simulations with multinuclear solid-state NMR spectroscopy and calorimetric techniques has evolved into the most powerful tool for their investigation. Showing recent examples from our groups, the present review demonstrates the power and versatility of this approach, which can handle both small model-surfactants like octanol and large technical surfactants like technical polyethylene glycol (PEG) mixtures and reveals otherwise unobtainable knowledge about their phase behavior and the underlying molecular arrangements. Full article
(This article belongs to the Special Issue Molecular Simulation in Interface and Surfactant—2nd Edition)
Show Figures

Figure 1

Back to TopTop