molecules-logo

Journal Browser

Journal Browser

Phytochemical Analysis and Bioactivity Screening of Medicinal Plants for Drug Discovery

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 1925

Special Issue Editor


E-Mail Website
Guest Editor
Research Center for Biosciences and Health Technologies (CBIOS), Lusofona University, Lisbon, Portugal
Interests: natural products; inflammation; ulcer; colitis; microcirculation, skin diseases
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The phytochemical analysis and bioactivity screening of medicinal plants have played an essential role in the advancement of drug discovery since ancient times. Throughout human history, the investigation of the chemical compositions of plants has unearthed numerous therapeutic compounds and lead molecules. Techniques such as chromatography and spectroscopy, which are extensively employed in the field of photochemistry, have enabled the isolation and identification of these molecules; this has laid the foundation for studies involving bioactivity screening and elucidated their medicinal potential, encompassing their antioxidant, antimicrobial and antitumoral properties, among others. As such, the aim of this Special Issue of Molecules is to disseminate cutting-edge research findings and methodologies related to phytochemical analysis and bioactivity screening. I am therefore pleased to welcome researchers working in these areas to submit their articles to this Special Issue of Molecules.

Prof. Dr. Sergio Faloni de Andrade
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytochemistry
  • bioactivity screening
  • natural products
  • biological activity
  • drug discovery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2032 KiB  
Article
An In Vitro Evaluation of Industrial Hemp Extracts Against the Phytopathogenic Bacteria Erwinia carotovora, Pseudomonas syringae pv. tomato, and Pseudomonas syringae pv. tabaci
by Getrude G. Kanyairita, Desmond G. Mortley, Willard E. Collier, Sheritta Fagbodun, Jamila M. Mweta, Hilarie Uwamahoro, Le’Shaun T. Dowell and Mwamba F. Mukuka
Molecules 2024, 29(24), 5902; https://doi.org/10.3390/molecules29245902 - 13 Dec 2024
Cited by 1 | Viewed by 1366
Abstract
Pests and diseases have caused significant problems since the domestication of crops, resulting in economic loss and hunger. To overcome these problems, synthetic pesticides were developed to control pests; however, there are significant detrimental side effects of synthetic pesticides on the environment and [...] Read more.
Pests and diseases have caused significant problems since the domestication of crops, resulting in economic loss and hunger. To overcome these problems, synthetic pesticides were developed to control pests; however, there are significant detrimental side effects of synthetic pesticides on the environment and human health. There is an urgent need to develop safer and more sustainable pesticides. Industrial hemp is a reservoir of compounds that could potentially replace some synthetic bactericides, fungicides, and insecticides. We determined the efficacy of industrial hemp extracts against Pseudomonas syringae pv. tabaci (PSTA), Pseudomonas syringae pv. tomato (PSTO), and Erwinia carotovora (EC). The study revealed a minimum inhibitory concentration (MIC) of 2.05 mg/mL and a non-inhibitory concentration (NIC) of 1.2 mg/mL for PSTA, an MIC of 5.7 mg/mL and NIC of 0.66 mg/mL for PSTO, and an MIC of 12.04 mg/mL and NIC of 5.4 mg/mL for EC. Time-kill assays indicated the regrowth of E. carotovora at 4 × MIC after 15 h and P. syringae pv. tomato at 2 × MIC after 20 h; however, P. syringae pv. tabaci had no regrowth. The susceptibility of test bacteria to hemp extract can be ordered from the most susceptible to the least susceptible, as follows: P. syringae pv. tabaci > P. syringae pv. tomato > E. carotovora. Overall, the data indicate hemp extract is a potential source of sustainable and safe biopesticides against these major plant pathogens. Full article
Show Figures

Graphical abstract

Back to TopTop