Exploring Novel Interactions Between Microbes and Minerals

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Environmental Mineralogy and Biogeochemistry".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 1405

Special Issue Editor


E-Mail Website
Guest Editor
1. NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
2. Department of Astronomy, University of Maryland, College Park, Maryland, MD 20742, USA
Interests: lava tube biogeochemistry; biosignatures; biomineralization

Special Issue Information

Dear Colleagues,

Minerals are defined as inorganic, crystalline solids that form in many natural environments as a result of abiotic geochemical processes. Yet, for a wide variety of surface and near-surface environments on Earth, mineral formation occurs as a combination of both abiotic and biotic processes. Minerals provide energetically favorable substrates for microbes to establish communities in the form of biofilms or microbial mats; their metabolic processes, along with the cycling of decaying organic matter, result in cation and metal exchange between the microbes and minerals. This exchange induces changes to the chemical environment, which results in the formation of secondary minerals, such as clays, Fe-oxides/hydroxides, carbonates, or sulfates, on the original mineral substrates through bioweathering or on microbial materials through biomineralization. The minerals may incorporate microbial compounds within their structure or preserve morphologic features, such as microfossils. The microbial overprint on minerals in the rock record can become obscured depending on environmental conditions, making it challenging to discern biotic from abiotic minerals. To facilitate the distinction in their origins, a wide variety of laboratory and analytical techniques have been employed to study the surficial, structural, and chemical characteristics of the minerals as well as the metabolisms and organic compounds that are involved. Understanding the types of microbial signatures that are incorporated in minerals and how they evolve is essential for reconstructing past environments, understanding how compounds are cycled in the environment, and acknowledging what traces of life could be detectable on planetary bodies beyond Earth.

Dr. Dina M. Bower
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioweathering
  • biomineralization
  • biogeochemistry
  • microbial mats
  • biofilms
  • secondary minerals
  • microfossils
  • metabolisms
  • biotic
  • abiotic

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 6432 KB  
Article
Minerals as Windows into Habitability on Lava Tube Basalts: A Biogeochemical Study at Lava Beds National Monument, CA
by Dina M. Bower, Amy C. McAdam, Clayton S. C. Yang, Feng Jin, Maeva Millan, Clara Christiann, Mathilde Mussetta, Christine Knudson, Jamielyn Jarvis, Sarah Johnson, Zachariah John, Catherine Maggiori, Patrick Whelley and Jacob Richardson
Minerals 2025, 15(12), 1303; https://doi.org/10.3390/min15121303 - 14 Dec 2025
Viewed by 238
Abstract
Lava tubes on Earth provide unique hydrogeological niches for life to proliferate. Orbital observations of the Martian surface indicate the presence of lava tubes, which could hold the potential for extant life or the preservation of past life within a subsurface environment protected [...] Read more.
Lava tubes on Earth provide unique hydrogeological niches for life to proliferate. Orbital observations of the Martian surface indicate the presence of lava tubes, which could hold the potential for extant life or the preservation of past life within a subsurface environment protected from harsh conditions or weathering at the surface. Secondary minerals in lava tubes form as a combination of abiotic and biotic processes. Microbes colonize the surfaces rich in these secondary minerals, and their actions induce further alteration of the mineral deposits and host basalts. We conducted a biogeochemical investigation of basaltic lava tubes in the Medicine Lake region of northern California by characterizing the compositional variations in secondary minerals, organic compounds, microbial communities, and the host rocks to better understand how their biogeochemical signatures could indicate habitability. We used methods applicable to landed Mars missions, including Raman spectroscopy, X-ray diffraction (XRD), Laser-Induced Breakdown Spectroscopy (LIBS), and gas chromatography–mass spectrometry (GC-MS), along with scanning electron microscopy (SEM) and metagenomic DNA/RNA sequencing. The main secondary minerals, amorphous silicates, and calcite, formed abiotically from the cave waters. Two types of gypsum, large euhedral grains with halites, and cryptocrystalline masses near microbial material, were observed in our samples, indicating different formation pathways. The cryptocrystalline gypsum, along with clay minerals, was associated with microbial materials and biomolecular signatures among weathered primary basalt minerals, suggesting that their formation was related to biologic processes. Some of the genes and pathways observed indicated a mix of metabolisms, including those involved in sulfur and nitrogen cycling. The spatial relationships of microbial material, Cu-enriched hematite in the host basalts, and genetic signatures indicative of metal cycling also pointed to localized Fe oxidation and mobilization of Cu by the microbial communities. Collectively these results affirm the availability of bio-essential elements supporting diverse microbial populations on lava tube basalts. Further work exploring these relationships in lava tubes is needed to unravel the intertwined nature of abiotic and biotic interactions and how that affects habitability in these environments on Earth and the potential for life on Mars. Full article
(This article belongs to the Special Issue Exploring Novel Interactions Between Microbes and Minerals)
Show Figures

Figure 1

16 pages, 4045 KB  
Article
Carbonate Mineral Formation by Microalgae: Precipitation Potential and Morphological Analysis
by Hamed Abdeh Keykha, Sumit Joshi, Maria Mavroulidou, Hadi Mohamadzadeh Romiani and Afshin Asadi
Minerals 2025, 15(11), 1096; https://doi.org/10.3390/min15111096 - 22 Oct 2025
Viewed by 740
Abstract
This study evaluated the ability of microalgae to produce carbonate minerals through CO2 uptake, in comparison with abiotic, direct chemical synthesis through CO2 absorption. A freshwater microalga (Synechococcus elongatus) isolated from garden soil in East Anglia, UK, was cultivated [...] Read more.
This study evaluated the ability of microalgae to produce carbonate minerals through CO2 uptake, in comparison with abiotic, direct chemical synthesis through CO2 absorption. A freshwater microalga (Synechococcus elongatus) isolated from garden soil in East Anglia, UK, was cultivated under laboratory conditions with CO2 injection to generate a bicarbonate-rich aqueous solution, in which Fe2+, Mg2+, and Ca2+ ions were added to facilitate carbonate formation. Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) analyses revealed distinct morphologies and mineral types. The algae-based process precipitated calcite, siderite, magnesite, and dolomite, whereas the abiotic process yielded, respectively, calcite, siderite, high-Mg calcite and nesquehonite. Biogenic minerals were finer and more morphologically diverse than their abiotically formed counterparts. The results indicated that microalgae produced 0.21 mol/L of calcium carbonate, compared to 0.51 mol/L obtained through abiotic CO2 sequestration, and a comparable yield of about 0.25 mol/L reported for Sporosarcina pasteurii-induced precipitation. Acid resistance tests showed that algae-induced minerals had similar or improved resistance to acidic conditions compared to minerals formed through abiotic CO2 consumption. Overall, despite slower kinetics, algae-induced carbonate precipitation offers advantages for soil stabilization by biocementation in the context of environmental sustainability, climate change mitigation and circular economy. Full article
(This article belongs to the Special Issue Exploring Novel Interactions Between Microbes and Minerals)
Show Figures

Figure 1

Back to TopTop