Mineralogical and Geochemical Characterization of Zn-Pb Ore Deposits: Insights into Their Genesis, Implications for Exploration, and Environmental Issues

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 4658

Special Issue Editors


E-Mail Website
Guest Editor
Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
Interests: mineralogy; mineralization; ore minerals; fluid inclusions

E-Mail Website
Guest Editor
Earth and Planetary Division, Physical Science Department, Kingsbourough College of the City, University of New York, Brooklyn, NY 11235, USA
Interests: economic geology; ore geochemistry; organic geochemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Our forthcoming Special Issue "Mineralogical and Geochemical Characterization of Zn-Pb Ore Deposits: Insights into their genesis, implications for exploration, and environmental issues” invites contributions to unravel the mineralogical and geological intricacies of these ore systems, with the ultimate goals of deciphering genetic processes, offering clues to exploration, and providing indications on environmental impact.

Zn-Pb ore deposits embrace a variety of types, including (but not limited to) Mississippi Valley Type (MVT), Sedimentary Exhalative (SEDEX), and Volcanogenic Massive Sulfides (VMS) deposits. They are formed in compressional to extensional geo-tectonic settings, from different fluid types circulating through different lithologies, resulting in a dynamic geological landscape for exploration. These deposits often also contain other valuable metals (e.g., Ag, Au), critical metals (e.g., Ga, Ge, REE), and industrial minerals (e.g., baryte, fluorite).

The mineralogical and geochemical characterization of ore minerals, such as sphalerite, is crucial for the understanding of factors influencing the genesis of Zn-Pb ore deposits. Such factors include geology, tectonics, host lithologies, and the intricate mechanisms governing mineralizing fluid migration and ore mineral deposition.

In light of the persistent challenges posed by the geological complexities of Zn-Pb ore deposits, this Special Issue aims to contribute valuable insights to enhance the broader understanding of ore genesis in diverse geological contexts. A detailed characterization of these ores allows geologists to identify key parameters for the exploration and the sustainable exploitation of Zn-Pb mineral resources.

Both regular and review articles are welcomed. Papers dealing with environmental aspects (including the remediation and recovery of metals from waste) will also be considered.

Dr. Rosa Anna Fregola
Dr. Larbi Rddad
Prof. Dr. Pierfranco Lattanzi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • characterization of Zn-Pb ore deposits
  • genesis of Zn-Pb ore deposits
  • ore mineralogy
  • ore geochemistry
  • sphalerite
  • critical metals
  • fluid inclusions
  • stable and radiogenic isotopes
  • ore exploration
  • Zn-Pb mineral resources
  • sustainable mining
  • environmental mineralogy and geochemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

30 pages, 6924 KiB  
Article
Diagenesis and Mineralization of the Neoarchean Bushy Park Lead-Zinc Deposit, Northern Cape Province, South Africa
by William Baugaard, Sahar Mohammadi and Jay M. Gregg
Minerals 2025, 15(5), 468; https://doi.org/10.3390/min15050468 - 30 Apr 2025
Viewed by 79
Abstract
The Bushy Park Pb-Zn deposit, hosted in unmetamorphosed carbonates of Neoarchean age, displays similarities to Phanerozoic Mississippi Valley-type (MVT) and Irish-type deposits. Mineralization is dated, by radiogenic methods, to Paleoproterozoic time. As such, Bushy Park is one of the oldest mineral deposits of [...] Read more.
The Bushy Park Pb-Zn deposit, hosted in unmetamorphosed carbonates of Neoarchean age, displays similarities to Phanerozoic Mississippi Valley-type (MVT) and Irish-type deposits. Mineralization is dated, by radiogenic methods, to Paleoproterozoic time. As such, Bushy Park is one of the oldest mineral deposits of this type in the world. Synsedimentary silicification and dolomitization preserve sedimentary fabrics, including microbial laminates, stromatolites, and oolites. Dolomitization likely was by evaporated seawater, as in Phanerozoic analogs. Structural control on mineralization, particularly solution collapse breccias, is similar to many Phanerozoic MVT and Irish-type deposits. Fluid inclusion data indicate three fluid endmembers involved in mineralization: a high-temperature, moderate-to-high salinity fluid; a low-temperature, moderate-to-high salinity fluid; and a moderate-to-low temperature, low salinity fluid. Saline fluids may have been sourced by evolved, evaporated seawater, and dilute fluids by meteoric and/or normal seawater. The fluids repeatedly mixed during ore and gangue mineral formation. Compositional zoning in gangue dolomite cement indicates that mineralizing fluid chemistry fluctuated over time. Petroleum inclusions and solid bitumen indicate that petroleum (oil) was an important fluid component at Bushy Park. Petroleum may have played a critical role in sulfur availability, addressing the issue of limited oceanic sulfate prior to and during the Great Oxidation Event. Full article
Show Figures

Figure 1

36 pages, 9140 KiB  
Article
The Geochemical Characteristics of Ore-Forming Fluids in the Jebel Stah Fluorite Deposit in Northeast Tunisia: Insights from LA-ICP-MS and Sr Isotope Analyses
by Chaima Somrani, Fouad Souissi, Radhia Souissi, Giovanni De Giudici, Eduardo Ferreira da Silva, Dario Fancello, Francesca Podda, José Francisco Santos, Tamer Abu-Alam, Sara Ribeiro and Fernando Rocha
Minerals 2025, 15(4), 331; https://doi.org/10.3390/min15040331 - 21 Mar 2025
Viewed by 747
Abstract
The Zaghouan Fluorite Province (ZFP) encloses F-Ba(Pb-Zn) ores hosted within Jurassic carbonate series, in northeastern Tunisia. Critical breakthroughs on the Jebel Stah fluorite deposits, an MVT-style F-mineralization, have been made within the Lower Jurassic limestones along the Zaghouan Fault, which is a major [...] Read more.
The Zaghouan Fluorite Province (ZFP) encloses F-Ba(Pb-Zn) ores hosted within Jurassic carbonate series, in northeastern Tunisia. Critical breakthroughs on the Jebel Stah fluorite deposits, an MVT-style F-mineralization, have been made within the Lower Jurassic limestones along the Zaghouan Fault, which is a major target for mineralization. This study presents the first REE-Y analyses conducted by LA-ICP-MS on fluorites in Tunisia, and specifically on the fluorites of Jebel Stah deposit. This analytical technique provides highly accurate insights into the geochemical regime of mineralizing fluids and the related scavenging sources. Distinct geochemical characteristics between two fluorite generations (G1 and G2) were revealed. Fluorites (Fl2) from the early generation (G1) showed low ΣREE + Y (36.3 and 39.73 ppm, respectively). When normalized to chondrites, early fluorite G1 displayed a bell-shaped REE + Y pattern with a depletion in LREE relative to HREE and a slight MREE hump. Late fluorite (Fl3) generation (G2) displayed higher ΣREE + Y concentrations (77.43 ppm), but an almost similar REE pattern. Ce/Ce* ratios demonstrated strong negative Ce anomalies in all fluorites, while Eu/Eu* ratios indicated weak negative Eu anomalies. The positive Y anomaly observed in the REE + Y patterns of fluorites G1 and G2 suggests Y-Ho fractionation in the fluid system. Moreover, significant degrees of differentiation between terbium (Tb) and lanthanum (La) have been observed in all fluorite samples. The plot of fluorites from both fluorite generations on the Tb/La–Tb/Ca diagram gives evidence of the sedimentary hydrothermal origin of the ore-forming fluids in the Jebel Stah F-deposit. Sr isotopes show that the mineralizing fluids are radiogenic and deeply sourced basinal brines, whereas the small variation in 87Sr/86Sr ratios suggests a similar source for Sr in fluorites G1 and G2. These results allow us to conclude that the economic fluorite (G1) ore of Jebel Stah was deposited due to the interaction of the deeply sourced hydrothermal fluid with the carbonated host rocks (dolomitization, an increase in pH, and Ca activity), whereas the late fluorite (G2) is an accessory and could have resulted from the mixing of the hydrothermal fluid with shallow meteoric waters. Full article
Show Figures

Figure 1

20 pages, 28626 KiB  
Article
The Evolution of Ore-Forming Fluids of the Halasheng Ag-Pb-Zn Deposit, Inner Mongolia: Evidence from Fluid Inclusions and Mineral Constitute
by Ri Han, Kezhang Qin, Fengming Xu, Junchao Lyu, Xinyuan Yang, Jing Zhang, Yuli Wang and Kaixuan Hui
Minerals 2024, 14(12), 1278; https://doi.org/10.3390/min14121278 - 16 Dec 2024
Viewed by 779
Abstract
The Early Cretaceous Halasheng deposit, located in the southern Erguna Block, is an intermediate sulfidation epithermal Ag-Pb-Zn deposit in the Derbugan metallogenic belt. The Halasheng deposit comprises both proximal skarn mineralization and distal hydrothermal vein-type Pb-Zn-Ag mineralization, which can be further divided into [...] Read more.
The Early Cretaceous Halasheng deposit, located in the southern Erguna Block, is an intermediate sulfidation epithermal Ag-Pb-Zn deposit in the Derbugan metallogenic belt. The Halasheng deposit comprises both proximal skarn mineralization and distal hydrothermal vein-type Pb-Zn-Ag mineralization, which can be further divided into three stages represented by Fe-As-S, Pb-Zn-Cu-Fe-S, and Ag-Pb-Zn-Sb-S element associations. The main ore minerals in the Halasheng deposit include galena, sphalerite, pyrite, arsenopyrite, chalcopyrite, bournonite, falkmanite, and argentiferous minerals. Visible silver in the form of independent argentiferous minerals, mainly including freibergite, polybasite, stromeyerite, pyrargyrite, acanthite, and native silver, is the major type of silver occurring in the Halasheng district. Fluid inclusion studies of sphalerite and quartz from different mineralization stages revealed that skarn mineralization has the relatively highest homogenization temperature (322~398 °C), while in the vein-type hydrothermal mineralization stage, the homogenization temperature has a declining trend from the early stage to late stage (from 300~350 °C to 145~236 °C). In the whole mineralization process, the salinity of ore-forming fluids is almost constant at a relatively high level (10.5~21.9 wt% NaCl). Fluid cooling, or fluid–wallrock reaction, is supposed to be the major cause of metal precipitation in the Halasheng deposit. Through an analogy with the typical Ag-Pb-Zn deposits in the Derbugan metallogenic belt, it is suggested that the discovered orebodies in the Halasheng deposit likely belong to the shallow part of the epithermal system, and there is high potential to discover Zn, Cu-Zn orebodies, and even porphyry Mo-Cu mineralization. In terms of regional ore prospecting, Early Cretaceous intermediate-acid intrusions have the potential to form related Ag-Pb-Zn deposits and should receive special attention. Furthermore, places where Lower Cambrian marbles are exposed or concealed are favorable settings for skarn mineralization. Full article
Show Figures

Figure 1

21 pages, 4658 KiB  
Article
Sources and Ore-Forming Environment of the Jinchanghe Pb-Zn Polymetallic Skarn Deposit, Baoshan Block, SW China: Constraints from Cu-S Isotopic and Trace Elemental Compositions of Sulfides
by Xiaolin Cheng, Yunman Zhou, Jiyuan Wang, Chengfeng Zhao, Jing Huang, Pengju Li, Hai Wang and Fuchuan Chen
Minerals 2024, 14(7), 644; https://doi.org/10.3390/min14070644 - 25 Jun 2024
Cited by 1 | Viewed by 918
Abstract
The Jinchanghe Pb-Zn polymetallic deposit is a representative distal skarn deposit in the Baoshan block. Due to limited research on the sources of ore-forming metals and trace elemental geochemistry of sulfides, the sources and mineralization environments of the Jinchanghe skarn Pb-Zn polymetallic deposit [...] Read more.
The Jinchanghe Pb-Zn polymetallic deposit is a representative distal skarn deposit in the Baoshan block. Due to limited research on the sources of ore-forming metals and trace elemental geochemistry of sulfides, the sources and mineralization environments of the Jinchanghe skarn Pb-Zn polymetallic deposit are still controversial. In this study, copper and sulfur isotopes and trace elements of sulfides from the Jinchanghe Pb-Zn polymetallic deposit were analyzed to reveal the sources of ore-forming materials and the ore-forming environments. The trace elemental analysis results show abundant Co, Ni, Mn and Se elements, and less As, Tl and Sb elements dominantly enter pyrite by isomorphic substitution, except for some Zn and Cu that occur as sulfide inclusions in Py1. Abundant Fe and Mn elements could substitute Zn to enter the sphalerite crystal lattice by the isomorphic substitution mechanism of (Fe2+ + Mn2+) ↔ 2Zn2+, and less Ag and Sb elements could enter the sphalerite by the isomorphic substitution mechanism of (Ag+ + Sb3+) ↔ 2Zn2+. The Cu-S isotopic and trace elemental compositions jointly suggest that the Jinchanghe distal skarn Pb-Zn polymetallic deposit formed from magmatic hydrothermal fluids with a sedimentary host-rock contribution, under mesothermal conditions (260 °C on sphalerite). Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 3278 KiB  
Review
Metallogenic Evolution Related to Mantle Delamination Under Northern Tunisia
by Nejib Jemmali, Fouad Souissi, Larbi Rddad, Emmanuel John Carranza and Guillermo Booth-Rea
Minerals 2025, 15(1), 31; https://doi.org/10.3390/min15010031 - 30 Dec 2024
Viewed by 1101
Abstract
Mineralization processes in the Tell-Atlas of North Africa coincided with magmatism, extension, and lithospheric rejuvenation during the middle to late Miocene. This review examines the lead isotope compositions and Pb-Pb age dating of ore deposits in the region to elucidate the sources and [...] Read more.
Mineralization processes in the Tell-Atlas of North Africa coincided with magmatism, extension, and lithospheric rejuvenation during the middle to late Miocene. This review examines the lead isotope compositions and Pb-Pb age dating of ore deposits in the region to elucidate the sources and timing of mineralization events. The data reveal a predominantly radiogenic signature in the ores, indicating that the primary component is from a crustal source, with a contribution from the mantle. Pb-Pb age dating suggests the ranges of mineralization ages, with late Miocene events being particularly significant, coinciding with proposed sub-continental mantle delamination following subduction of the African lithosphere. In this context, polymetallic mineralizations formed related to felsic magmatism, hydrothermalism driven by extensional faults, resulting in the formation of Mississippi Valley-Type, and Sedimentary exhalative deposits within associated semi-grabens and diapirism. The correlation between orogenic extensional collapse, magmatism, and mineralization underscores the importance of understanding the specific geological context of ore formation. The detachment of subducted slabs and subsequent influx of hot asthenosphere play pivotal roles in creating conducive conditions for mineralization. This study sheds light on the intricate interplay between tectonic mechanisms, mantle-crust interactions, and mineralization events in the Tell-Atlas, offering insights for further exploration in the region. Full article
Show Figures

Figure 1

Back to TopTop