Metabolic Changes during Pre- and Post-harvest Fruit and Vegetable Decay, Ripening and Senescence

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Plant Metabolism".

Deadline for manuscript submissions: closed (8 April 2025) | Viewed by 8836

Special Issue Editors


E-Mail Website
Guest Editor
CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIDCA (Centro de Investigación y Desarrollo en Ciencia y Tecnología de Alimentos), Calles 47 y 116, La Plata CP 1900, Buenos Aires, Argentina
Interests: traditional and emerging post-harvest technology; post-harvest physiol-ogy of fruit and vegetables; chilling injury (eggplant, pepper, tomato); bioactive compounds; food chemistry
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIDCA (Centro de Investigación y Desarrollo en Ciencia y Tecnología de Alimentos), Calles 47 y 116, La Plata CP 1900, Buenos Aires, Argentina
Interests: post-harvest physiology of fruit and vegetables; post-harvest technology; shelf-life; antioxidant compounds; bio-stimulants; functional and nutri-tional quality; essential oils
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fruits and vegetables represent a significant portion of the world's food waste. The overall quality of fruit and vegetable products results from various biochemical processes that occur beforehand. Therefore, it is essential for scientists to study them. Understanding the profile, roles, biochemistry and/or regulation of metabolites is crucial in modulating, improving and extending their post-harvest shelf-life while also increasing knowledge about specific physiological and biochemical metabolism.

Thus, the purpose of this Special Issue is to collect research and review articles focused on recent advancements in the main metabolic changes that occur during both the pre- and post-harvest stages of fruit and vegetables. The inclusion of applications involving pre- or post-harvest strategies, such us bio-stimulants or abiotic stresses (not exclusively), with the ultimate aim of prolonging postharvest life, reducing the incidence of pathogens or deterioration reactions, and enhancing or preserving valuable metabolites contributing to nutritional and sensorial quality is encouraged. This Special Issue will also cover advances in understanding the mechanisms of chilling injury and technologies to mitigate or delay its occurrence. Contributions related to recent biochemical aspects, changes and/or the regulation of metabolites and enzymes associated with microorganism incidence and product ripening/senescence are welcome. Finally, methodology development for detecting metabolites or changes in metabolic pathways are also welcome.

Dr. Analía Concellón
Dr. María José Zaro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • pre- and post-harvest technology
  • bio-stimulants and abiotic stress
  • nutritional quality
  • metabolic pathway
  • bioactive compounds
  • chilling injury

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 2350 KiB  
Article
Exploring Postharvest Metabolic Shifts and NOX2 Inhibitory Potential in Strawberry Fruits and Leaves via Untargeted LC-MS/MS and Chemometric Analysis
by Georgia Ladika, Paris Christodoulou, Eftichia Kritsi, Thalia Tsiaka, Georgios Sotiroudis, Dionisis Cavouras and Vassilia J. Sinanoglou
Metabolites 2025, 15(5), 321; https://doi.org/10.3390/metabo15050321 - 13 May 2025
Viewed by 228
Abstract
Background/Objectives: Strawberries are highly appreciated for their rich phytochemical composition, but rapid postharvest deterioration limits their shelf life and nutritional quality. This study aimed to investigate the metabolic changes occurring in both strawberry fruits and leaves during storage and to evaluate the NADPH [...] Read more.
Background/Objectives: Strawberries are highly appreciated for their rich phytochemical composition, but rapid postharvest deterioration limits their shelf life and nutritional quality. This study aimed to investigate the metabolic changes occurring in both strawberry fruits and leaves during storage and to evaluate the NADPH oxidase 2 (NOX2) inhibitory potential of strawberry-derived metabolites. Methods: Untargeted LC-MS/MS analysis was conducted on fruit and leaf tissues stored at 8 ± 0.5 °C. A total of 37 metabolites were identified, including organic acids, phenolic acids, flavonoids, and hydroxycinnamic acid derivatives. Multivariate statistical analyses (ANOVA, PLS-DA, and volcano plots) were used to assess temporal and tissue-specific metabolic shifts. Additionally, a machine learning-based predictive model was applied to evaluate the NOX2 inhibitory potential of 24 structurally characterized metabolites. Results: Storage induced significant and tissue-specific metabolic changes. In fruits, malic acid, caffeic acid, and quercetin-3-glucuronide showed notable variations, while ellagic acid aglycone and galloylquinic acid emerged as prominent markers in leaves. The predictive model identified 21 out of 24 metabolites as likely NOX2 inhibitors, suggesting potential antioxidant and anti-inflammatory bioactivity. Conclusions: These findings provide new insights into postharvest biochemical dynamics in both strawberry fruits and leaves. The results highlight the value of leaves as a source of bioactive compounds and support their potential valorization in functional food and nutraceutical applications. Full article
Show Figures

Figure 1

11 pages, 1992 KiB  
Article
Classification of Packaged Vegetable Soybeans Based on Freshness by Metabolomics Combined with Convolutional Neural Networks
by Yoshio Makino, Yuta Kurokawa, Kenji Kawai and Takashi Akihiro
Metabolites 2025, 15(3), 145; https://doi.org/10.3390/metabo15030145 - 21 Feb 2025
Viewed by 485
Abstract
Background/Objectives: Effectiveness of modified atmosphere (MA) packaging for the preservation of the freshness of vegetable soybeans was confirmed by using metabolomics combined with convolutional neural networks (CNNs). Methods: Stored under a low O2, high CO2 environment, the vegetable soybeans’ freshness [...] Read more.
Background/Objectives: Effectiveness of modified atmosphere (MA) packaging for the preservation of the freshness of vegetable soybeans was confirmed by using metabolomics combined with convolutional neural networks (CNNs). Methods: Stored under a low O2, high CO2 environment, the vegetable soybeans’ freshness was tracked through changes in hue angle on the surface of the crops and metabolite levels compared to those stored under normoxia. Results: MA packaging slowed respiration and reduced pectin decomposition, succinic acid oxidation, and fatty acid consumption, all linked to freshness maintenance. Using 62 key metabolite concentrations as inputs, CNNs classified vegetable soybean freshness into seven categories with 92.9% accuracy, outperforming traditional linear discriminant analysis by 14.3%. Conclusions: These findings demonstrate MA packaging’s effectiveness in extending freshness of vegetable soybeans by monitoring specific metabolic changes. This will contribute to the advancement of research aimed at elucidating the relationship between freshness and metabolism in horticultural crops. Full article
Show Figures

Graphical abstract

12 pages, 1409 KiB  
Article
Characteristic Polyphenols in 15 Varieties of Chinese Jujubes Based on Metabolomics
by Yong Shao, Siying Li, Xuan Chen, Jiahui Zhang, Huxitaer Jianaerbieke, Gang Chen, Xiaodong Wang and Jianxin Song
Metabolites 2024, 14(12), 661; https://doi.org/10.3390/metabo14120661 - 28 Nov 2024
Viewed by 854
Abstract
Background: Jujube is a homologous herb of medicine and food, and polyphenols are key in determining the functional effects of jujubes. Methods: In this study, characteristic polyphenols in 15 varieties of Chinese jujubes were investigated based on untargeted metabolomics. Results: The results showed [...] Read more.
Background: Jujube is a homologous herb of medicine and food, and polyphenols are key in determining the functional effects of jujubes. Methods: In this study, characteristic polyphenols in 15 varieties of Chinese jujubes were investigated based on untargeted metabolomics. Results: The results showed that a total of 79 characteristic polyphenols were identified in the 15 varieties of Chinese jujube, and 55 characteristic polyphenols such as syringetin, spinosin and kaempferol were reported for the first time. Scopoletin (63.94% in LZYZ), pectolinarin (22.63% in HZ) and taxifolin (19.69% in HZ) contributed greatly and presented significant (p < 0.05) differences in the 15 varieties of Chinese jujubes. HZ was characterized by pectolinarin, erianin and wogonoside, while XSHZ, NYDZ and RQHZ, with similar polyphenol profiles, were characterized by (+)-catechin, combretastatin A4 and tectorigenin. JSBZ, HMDZ, TZ, JCJZ and HPZ had similar polyphenol profiles of galangin, isoferulic acid and hydroxysafflor yellow A. Conclusions: Metabolomics is critical in grasping the full polyphenol contents of jujubes, and the differences in the polyphenol profiles and characteristic individual polyphenols of the 15 varieties of Chinese jujubes were well analyzed by principal component analysis (PCA). Full article
Show Figures

Graphical abstract

11 pages, 1701 KiB  
Article
Biostimulant-Based Molecular Priming Improves Crop Quality and Enhances Yield of Raspberry and Strawberry Fruits
by Petar Kazakov, Saleh Alseekh, Valentina Ivanova and Tsanko Gechev
Metabolites 2024, 14(11), 594; https://doi.org/10.3390/metabo14110594 - 5 Nov 2024
Viewed by 1257
Abstract
Background/Objectives: The biostimulant SuperFifty, produced from the brown algae Ascophyllum nodosum, can improve crop quality and yield and mitigate stress tolerance in model and crop plants such as Arabidopsis thaliana, pepper, and tomato. However, the effect of SuperFifty on raspberries and [...] Read more.
Background/Objectives: The biostimulant SuperFifty, produced from the brown algae Ascophyllum nodosum, can improve crop quality and yield and mitigate stress tolerance in model and crop plants such as Arabidopsis thaliana, pepper, and tomato. However, the effect of SuperFifty on raspberries and strawberries has not been well studied, especially in terms of nutritional properties and yield. The aim of this study was to investigate the effect of SuperFifty on the quality and quantity of raspberry and strawberry fruits, with a focus on metabolic composition and essential elements, which together determine the nutritional properties and total yield of these two crops. Methods: Metabolome analysis was performed by liquid chromatography–mass spectrometry analysis (LC-MS), and essential elements analysis was performed by inductively coupled plasma-mass spectrometry (ICP-MS). Results: Here, we demonstrate that SuperFifty increases the fruit size of both raspberries and strawberries and enhances the yield in these two berry crops by 42.1% (raspberry) and 33.9% (strawberry) while preserving the nutritional properties of the fruits. Metabolome analysis of 100 metabolites revealed that antioxidants, essential amino acids, organic acids, sugars, and vitamins, such as glutathione, alanine, asparagine, histidine, threonine, serine, tryptophan, sucrose, citric acid, pantothenic acid (vitamin B5), as well as other primary metabolites, remain the same in the SuperFifty-primed fruits. Secondary metabolites, such as caffeic acid, p-coumaric acid, kaempferol, and quercetin, also maintained their levels in the SuperFifty-primed fruits. Analysis of essential elements demonstrated that elements important for human health, such as Zn, Mn, Fe, B, Cu, K, and Ca, maintain the same levels in the raspberry and strawberry fruits obtained from the biostimulant-primed plants. Magnesium, an important element known as a co-factor in many enzymatic reactions related to both plant physiology and human health, increased in both raspberry and strawberry fruits primed with SuperFifty. Finally, we discuss the potential financial and health benefits of the SuperFifty-induced priming for both growers and consumers. Conclusions: We demonstrate that SuperFifty significantly enhances the yield of both raspberries and strawberries, improves the marketable grade of the fruits (larger and heavier fruits), and enhances the nutritional properties by elevating Mg content in the fruits. Altogether, this biostimulant-induced molecular priming offers an environmentally friendly, efficient, and sustainable way to enhance the yield and quality of berry crops, with clear benefits to both berry producers and customers. Full article
Show Figures

Figure 1

15 pages, 8577 KiB  
Article
Improving Resistance of Mango to Colletotrichum gloeosporioides by Activating Reactive Oxygen Species and Phenylpropane Metabolism of Bacillus amyloliquefaciens GSBa-1
by Wenya Li, Hua Chen, Jianhu Cheng, Min Zhang, Yan Xu, Lihua Wang, Xueqiao Zhao, Jinyao Zhang, Bangdi Liu and Jing Sun
Metabolites 2024, 14(8), 417; https://doi.org/10.3390/metabo14080417 - 29 Jul 2024
Cited by 3 | Viewed by 1576
Abstract
This study aimed to explore the effects of Bacillus amyloliquefaciens GSBa-1 treatment on anthracnose disease resistance and the metabolism of reactive oxygen species (ROS) and phenylpropanoids in mangoes during storage. Mangoes were soaked in a solution containing 1 × 108 CFU/mL of [...] Read more.
This study aimed to explore the effects of Bacillus amyloliquefaciens GSBa-1 treatment on anthracnose disease resistance and the metabolism of reactive oxygen species (ROS) and phenylpropanoids in mangoes during storage. Mangoes were soaked in a solution containing 1 × 108 CFU/mL of B. amyloliquefaciens GSBa-1. The anthracnose disease incidence, disease index, respiration intensity, ethylene release, reactive oxygen species content, and the activities of related metabolic enzymes, phenylpropanoid-related metabolic enzymes, and phenolic acids in the skin and pulp of mangoes were investigated under normal temperature storage conditions. The results showed that the antagonistic bacterial treatment (ABT) did not significantly inhibit the growth of Colletotrichum gloeosporioides in vitro. However, it significantly reduced the incidence of mango anthracnose disease when applied to the mango peel. ABT enhanced the latent resistance of mango to anthracnose disease by activating its reactive oxygen and phenylpropanoid metabolism. It maintained higher levels of ROS production and elimination in the peel. Moreover, it rapidly activated manganese superoxide dismutase, induced the accumulation of H2O2, and enhanced the activity of manganese superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase in the mango peel. Furthermore, ABT activated phenylalanine ammonia-lyase, cinnamic acid-4-hydroxylase, 4-coumaroyl-CoA ligase, and cinnamyl alcohol dehydrogenase in the mango peel and pulp, promoting the accumulation of antifungal phenolic acids such as gallic acid, catechins, and ellagic acid. Bacillus amyloliquefaciens GSBa-1 may be a potent inhibitor of mango anthracnose, primarily enhancing the resistance of mangoes to anthracnose by synergistically activating ROS in the peel and phenylpropanoid metabolism in the pulp, thereby reducing the incidence of anthracnose effectively. Full article
Show Figures

Figure 1

15 pages, 2778 KiB  
Article
Melatonin Combined with Wax Treatment Enhances Tolerance to Chilling Injury in Red Bell Pepper
by Magalí Darré, María José Zaro, Michelle Guijarro-Fuertes, Ludmila Careri and Analia Concellón
Metabolites 2024, 14(6), 330; https://doi.org/10.3390/metabo14060330 - 13 Jun 2024
Cited by 4 | Viewed by 1384
Abstract
Bell peppers (Capsicum annuum L.) are prone to chilling injury (CI) when stored at temperatures below 7 °C. Melatonin, a natural plant regulator, plays a critical role in defending against different pre- and post-harvest abiotic stresses, including those associated with cold storage. [...] Read more.
Bell peppers (Capsicum annuum L.) are prone to chilling injury (CI) when stored at temperatures below 7 °C. Melatonin, a natural plant regulator, plays a critical role in defending against different pre- and post-harvest abiotic stresses, including those associated with cold storage. This study aimed to assess the effects of applying exogenous melatonin alone and in combination with a commercial wax on the CI tolerance, postharvest life, and potential biomarker search of red bell peppers. In the initial experiment, the effective melatonin concentration to reduce CI effects was determined. Peppers were sprayed with either distilled water (control) or a melatonin aqueous solution (M100 = 100 μM or M500 = 500 μM) and then stored for 33 d at 4 °C, followed by 2 d at 20 °C. The M500 treatment proved to be more effective in reducing fruit CI incidence (superficial scalds) and metabolic rate, while weight loss, softening, and color were comparable to the control. A second experiment assessed the potential synergistic effects of a combined melatonin and commercial wax treatment on pepper CI and quality. Fruits were sprayed with distilled water (control), melatonin (M500), commercial wax (Wax), or the combined treatment (Wax + M500) and stored for 28 d at 4 °C, followed by 2 d at 20 °C. The Wax + M500 was the most effective in significantly reducing the incidence of fruit CI symptoms and calyx fungal infection. Furthermore, this combined treatment enhanced fruit weight loss prevention compared with individual melatonin or wax treatment. Also, Wax + M500-treated peppers exhibited notable proline accumulation, indicative of a metabolic response counteracting the cold effects, resulting in better fruit stress acclimation. This treatment also preserved the peppers’ color and antioxidant capacity. In summary, these findings highlight the suitability of applying a combined Wax + M500 treatment as a highly effective strategy to enhance the CI tolerance of peppers and extend their postharvest life. Full article
Show Figures

Figure 1

24 pages, 1834 KiB  
Article
Heat-Induced Cross-Tolerance to Salinity Due to Thermopriming in Tomatoes
by Tobias Körner, Ruven Gierholz, Jana Zinkernagel and Simone Röhlen-Schmittgen
Metabolites 2024, 14(4), 213; https://doi.org/10.3390/metabo14040213 - 10 Apr 2024
Cited by 3 | Viewed by 1776
Abstract
Global plant production is challenged by unpredictable (a)biotic stresses that occur individually, simultaneously or staggered. Due to an increasing demand for environmentally friendly plant production, new sustainable, universal, and preventive measures in crop protection are needed. We postulate thermopriming as a suitable procedure [...] Read more.
Global plant production is challenged by unpredictable (a)biotic stresses that occur individually, simultaneously or staggered. Due to an increasing demand for environmentally friendly plant production, new sustainable, universal, and preventive measures in crop protection are needed. We postulate thermopriming as a suitable procedure that fulfills these requirements. Therefore, we performed thermopriming as a pre-conditioning on tomato transplants in combination with two subsequent salt stress treatments to evaluate their single and combined physiological effects on leaves and fruits with regard to plant performance, fruit yield and quality. We identified a cross-tolerance to salinity that was triggered by the preceding thermopriming treatment and resulted in an accumulation of phenols and flavonols in the leaves. Plant growth and fruit yield were initially delayed after the stress treatments but recovered later. In regard to fruit quality, we found an increase in carotenoid and starch contents in fruits due to thermopriming, while sugars and titratable acidity were not affected. Our results indicate that thermopriming can mitigate the impact of subsequent and recurrent stress events on plant performance and yield under production-like conditions. Full article
Show Figures

Figure 1

Back to TopTop