Improving Resistance of Mango to Colletotrichum gloeosporioides by Activating Reactive Oxygen Species and Phenylpropane Metabolism of Bacillus amyloliquefaciens GSBa-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Antagonistic Treatment Method
2.3. Determination of Physical and Chemical Indices of Storage
2.3.1. Incidence and Disease Index Statistics
2.3.2. In Vitro Anthracnose Inhibition Tests
2.3.3. Respiratory Strength and Ethylene Release
2.3.4. Determination of Hydrogen Peroxide and Superoxide Anion Free Radicals
2.3.5. Determination of Enzyme Activities Related to ROS Metabolism
2.3.6. Determination of Enzyme Activities Related to Phenylpropane Metabolism
2.3.7. Determination of Phenolic Compounds by HPLC
2.4. Statistical Analysis
3. Results
3.1. Impact of ABT on the Incidence of Mango Anthracnose during Storage and In Vitro
3.2. Impact of ABT on ROS Generation and Accumulation in Mangoes
3.3. Impact of ABT on ROS-Metabolizing Enzyme Activity in Mangoes
3.4. Impact of ABT on Enzyme Activities in the Phenylpropanoid Metabolic Pathway of Stored Mangoes
3.5. Impact of ABT Treatment on the Accumulation of Phenolic Compounds in Stored Mangoes
3.6. Correlation Analysis of Various Storage Quality Parameters in Mangoes during Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Xin, Q.; Zhang, M.; Chen, J.; Lu, Q.; Zhou, X.; Li, X.; Zhang, W.; Feng, W.; Pei, H.; et al. Research progress on mango post-harvest ripening physiology and the regulatory technologies. Foods 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Gava, A.; Alves, S.; Duarte, C. Timing the application of Bacillus subtilis QST 713 in the integrated management of the postharvest decay of mango fruits. Crop Prot. 2019, 121, 51–56. [Google Scholar] [CrossRef]
- Janamatti, T.; Robin, G.; Charanjit, K.; Eldho, V.; Sharma, R.; Manish, S.; Maharishi, T.; Manojv, K.; Aundy, K. Bacterial volatile mediated suppression of postharvest anthracnose and quality enhancement in mango. Postharvest Biol. Technol. 2021, 177, 111525. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; He, Q.; Lin, H.; Chang, H.; Liu, Y.; Sun, H.; Song, X. Analysis of the fungicidal efficacy, environmental fate, and safety of the application of a mefentrifluconazole and pyraclostrobin mixture to control mango anthracnose. J. Sci. Food Agric. 2022, 103, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Oliveira, D.; Vieira, S.; Câmara, S.; Souza, D. Control of anthracnose caused by Colletotrichum species in guava, mango and papaya using synergistic combinations of chitosan and Cymbopogon citratus (D.C. ex Nees) Stapf. essential oil. Int. J. Food Microbiol. 2018, 266, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Habiba, A.; Rubina, N.; Afshan, R.; Asma, H.; Jehan, A.; Syed, H. Effects of fungicides and storage temperature on shelf life and fruit quality of stored mango (Mangifera indica L.). Pak. J. Bot. 2021, 53, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Gayathri, M.; Thiribhuvanamala, G.; Praveen, T.; Subbaih, A.; Pravin, A.; Rajamanickam, S.; Akkanna, K.; Haripriya, S. Benzothiazole—An antifungal compound derived from medicinal mushroom Ganoderma lucidum against mango Anthracnose Pathogen Colletotrichum gloeosporioides (Penz and (Sacc.)). Molecules 2023, 28, 2476. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, E.; Lin, Y.; Xiao, T.; Ji, X.; Zhao, Z.; Yan, W. Identification, biocontrol activity, and field application effect of Bacillus velezensis Yb-1. Horticulturae 2023, 9, 376. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, M.; Yang, Z.; Luo, T.; Sarwar, A.; Sarah, M.; Tariq, A.; Yang, Z. Purification and characterization of a novel milk-clotting enzyme produced by Bacillus amyloliquefaciens GSBa-1. Eur. Food Res. Technol. 2019, 245, 2447–2457. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, Q.; Zhou, X.; Wang, L.; Sun, J.; Gao, H.; Liu, B. Effects of Bacillus amyloliquefaciens GSBa-1 on polyphenols synthesis and phenylpropane metabolism in citron. Food Sci. 2023, 44, 167–1754. (In Chinese) [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, M.; Liu, B.; Guo, S.; Zhang, Z.; Sun, J.; Gao, H.; Liu, G. Effect of Bacillus amyloliquefaciens GSBa-1 on Postharvest Storage Quality of Five Fruits. Food Res. Dev. 2024, 45, 59–68. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Li, B.; Zhang, Z.; Chen, Y.; Tian, S. Antagonistic Yeasts: A promising alternative to chemical fungicides for controlling postharvest decay of fruit. J. Fungi 2020, 6, 158. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, W.; Zeng, J.; Shao, Y. Mechanisms of action of the yeast Debaryomyces nepalensis for control of the pathogen Colletotrichum gloeosporioides in mango fruit. Biol. Control. 2018, 123, 111–119. [Google Scholar] [CrossRef]
- Xin, Q.; Sun, J.; Feng, X.; Zhao, Z.; Liu, B.; Jiang, L.; Hao, G. Effects of rapid heat shock treatment on calli formation and metabolism of sweet potato. Food Sci. 2022, 43, 228–238. (In Chinese) [Google Scholar] [CrossRef]
- You, W.; Ge, C.; Jiang, Z.; Chen, M.; Li, W.; Shao, Y. Screening of a broad-spectrum antagonist-Bacillus siamensis, and its possible mechanisms to control postharvest disease in tropical fruits. Biol. Control. 2021, 157, 104584. [Google Scholar] [CrossRef]
- Zhao, H.; Zheng, Z.; Zhang, M.; Wang, Y.; Zhang, M.; Yang, Z. Fermentation optimization of rennet-producing Bacillus amyloliquefaciens GSBa-1 for high-density culture and its kinetic model. Food Sci. Technol. 2022, 42, e40122. [Google Scholar] [CrossRef]
- Wang, X.; Shi, J.; Wang, R. Effect of Burkholderia contaminans on postharvest diseases and induced resistance of strawberry fruits. Plant Pathol. J. 2018, 34, 403. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, R.; Tang, Y.; Cheng, Z.; Qian, M.; Li, W.; Shao, Y. Transcriptome analysis reveals the inducing effect of Bacillus siamensis on disease resistance in postharvest mango fruit. Foods 2022, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Cheng, J.; Sun, J.; Guo, S.; Guo, X.; Chen, Q.; Wang, X.; Zhu, X.; Liu, B. Effect of red visible lighting on postharvest ripening of bananas via the regulation of energy metabolism. Horticulturae 2023, 9, 840. [Google Scholar] [CrossRef]
- Xin, Q.; Liu, B.; Sun, J.; Fan, X.; Li, X.; Jiang, L.; Hao, G.; Pei, H.; Zhou, X. Heat shock treatment promoted callus formation on postharvest sweet potato by adjusting active oxygen and phenylpropanoid metabolism. Agriculture 2022, 12, 1351. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, B.; Ma, L.; Zheng, X.; Di, G.; Xue, H.; Yang, B.; Wang, Y.; Zhang, Z.; Prusky, D. Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) promotes tuber wound healing of potato by elevation of phenylpropanoid metabolism. Postharvest Biol. Technol. 2019, 153, 125–132. [Google Scholar] [CrossRef]
- Villamil, G.; Van, D.; Piagentini, A. Strawberry agro-industrial by-products as a source of bioactive compounds: Effect of cultivar on the phenolic profile and the antioxidant capacity. Bioresour. Bioprocess. 2021, 8, 61. [Google Scholar] [CrossRef]
- Hu, J.; Zheng, M.; Dang, S.; Shi, M.; Zhang, J.; Li, Y. Biocontrol potential of Bacillus amyloliquefaciens LYZ69 against anthracnose of alfalfa (Medicago sativa L.). Phytopathology 2020, 111, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Bi, G.; Hu, M.; Fu, L.; Zhang, X.; Zuo, J.; Li, J.; Yang, J.; Zhou, J. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay. Nat. Plants 2022, 8, 1160–1175. [Google Scholar] [CrossRef]
- Konsue, W.; Tida, D.; Savitree, L. Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms 2020, 8, 317. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Wan, B.; Feng, S.; Shao, Y. Biocontrol of postharvest anthracnose of mango fruit with Debaryomyces nepalensis and effects on storage quality and postharvest physiology. J. Food Sci. 2015, 80, 2555–2563. [Google Scholar] [CrossRef] [PubMed]
- Joradol, A.; Uthaibutra, J.; Lithanatudom, P.; Saengnil, K. Induced expression of NOX and SOD by gaseous sulfur dioxide and chlorine dioxide enhances antioxidant capacity and maintains fruit quality of ‘Daw’longan fruit during storage through H2O2 signaling. Postharvest Biol. Technol. 2019, 156, 110938. [Google Scholar] [CrossRef]
- Kundu, P.; Gill, R.; Nehra, A. Reactive oxygen species (ROS) management in engineered plants for abiotic stress tolerance. In Advancement in Crop Improvement Techniques; Elsevier: Amsterdam, The Netherlands, 2020; pp. 241–262. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, S.; Zhu, Z.; Xu, Y.; Qin, G. Effects of 1-methylcyclopropene (1-MCP) on ripening and resistance of jujube (Zizyphus jujuba cv. Huping) fruit against postharvest disease. LWT-Food Sci. Technol. 2012, 45, 13–19. [Google Scholar] [CrossRef]
- Prusky, D.; Gianfranco, R. Induced resistance in fruit and vegetables: A host physiological response limiting postharvest disease development. Annu. Rev. Phytopathol. 2023, 61, 279–300. [Google Scholar] [CrossRef]
- Meng, X.; Fang, J.; Fu, M.; Jiao, W.; Ren, P.; Yang, X. The role of 1-methylcyclopropylene (1-MCP) and salicylic acid (SA) in induced resistance of postharvest fruits. Horticulturae 2023, 9, 108. [Google Scholar] [CrossRef]
- Dong, N.; Lin, H. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J. Integr. Plant Biol. 2021, 63, 180–209. [Google Scholar] [CrossRef] [PubMed]
- Elsherbiny, E.; Dawood, D.; Safwat, N. Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit. Pestic. Biochem. Physiol. 2021, 171, 104721. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Tian, Z.; He, H.; Long, C.; Jiang, F. Bacillus species as potential biocontrol agents against citrus diseases. Biol. Control 2020, 151, 104419. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Chen, H.; Cheng, J.; Zhang, M.; Xu, Y.; Wang, L.; Zhao, X.; Zhang, J.; Liu, B.; Sun, J. Improving Resistance of Mango to Colletotrichum gloeosporioides by Activating Reactive Oxygen Species and Phenylpropane Metabolism of Bacillus amyloliquefaciens GSBa-1. Metabolites 2024, 14, 417. https://doi.org/10.3390/metabo14080417
Li W, Chen H, Cheng J, Zhang M, Xu Y, Wang L, Zhao X, Zhang J, Liu B, Sun J. Improving Resistance of Mango to Colletotrichum gloeosporioides by Activating Reactive Oxygen Species and Phenylpropane Metabolism of Bacillus amyloliquefaciens GSBa-1. Metabolites. 2024; 14(8):417. https://doi.org/10.3390/metabo14080417
Chicago/Turabian StyleLi, Wenya, Hua Chen, Jianhu Cheng, Min Zhang, Yan Xu, Lihua Wang, Xueqiao Zhao, Jinyao Zhang, Bangdi Liu, and Jing Sun. 2024. "Improving Resistance of Mango to Colletotrichum gloeosporioides by Activating Reactive Oxygen Species and Phenylpropane Metabolism of Bacillus amyloliquefaciens GSBa-1" Metabolites 14, no. 8: 417. https://doi.org/10.3390/metabo14080417
APA StyleLi, W., Chen, H., Cheng, J., Zhang, M., Xu, Y., Wang, L., Zhao, X., Zhang, J., Liu, B., & Sun, J. (2024). Improving Resistance of Mango to Colletotrichum gloeosporioides by Activating Reactive Oxygen Species and Phenylpropane Metabolism of Bacillus amyloliquefaciens GSBa-1. Metabolites, 14(8), 417. https://doi.org/10.3390/metabo14080417