Lipid Metabolism Dysregulation in Metabolic Disorders: Unraveling the Molecular Complexity

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Lipid Metabolism".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1322

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Medicine, NYU Long Island School of Medicine, Mineola, New York, NY 11501, USA
2. Division of Cardiology, Department of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
Interests: inflammation; lipids; cardio-neurologic axis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Lipid metabolism and homeostasis are critical for the proper functioning of multiple organ systems, particularly for the cardiovascular and nervous systems. Disorders of lipid metabolism may begin early in life or manifest in older people, and the consequences can be devastating. Dysregulated lipid production, processing, and storage can result from specific genetic mutations or complex multifactorial processes and may also be environmentally influenced. This Special Issue accepts submissions on a wide range of topics related to lipid abnormalities spanning organ systems, life stage, and etiology. Articles focused on dyslipidemia, obesity, diabetes, atherosclerosis, and the effects of chronic inflammation on the heart and brain are welcome, as are those covering dysfunction of hepatic lipid metabolism. Papers that focus on mechanistic aspects, molecular pathways, and innovative therapies are of particular interest. Both review articles and original research will be considered.

Dr. Joshua De Leon
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lipid metabolism
  • dyslipidemia
  • atherosclerosis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 1684 KiB  
Article
Dietary Nicotinamide Mononucleotide, a Key NAD+ Intermediate, Alleviates Body Fat Mass and Hypertriglyceridemia by Enhancing Energy Expenditure with Promotion of Fat Oxidation and Hepatic Lipolysis and Suppressing Hepatic Lipogenesis in db/db Mice
by Bungo Shirouchi, Sarasa Mitsuta, Mina Higuchi, Mai Okumura and Kazunari Tanaka
Metabolites 2025, 15(5), 333; https://doi.org/10.3390/metabo15050333 - 18 May 2025
Viewed by 283
Abstract
Background/Objectives: Supplementation with nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD+) intermediate, exerts anti-aging, anti-obesity, and anti-diabetic effects in animal experiments. However, previous studies have evaluated NMN supplementation using oral administration in drinking water or by intraperitoneal administration. No [...] Read more.
Background/Objectives: Supplementation with nicotinamide mononucleotide (NMN), a key nicotinamide adenine dinucleotide (NAD+) intermediate, exerts anti-aging, anti-obesity, and anti-diabetic effects in animal experiments. However, previous studies have evaluated NMN supplementation using oral administration in drinking water or by intraperitoneal administration. No studies have reported whether NMN exerts beneficial effects when incorporated into the diet. The diet is a multicomponent mixture of many nutrients that may interact with each other, thus weakening the effects of NMN. In the present study, we evaluated whether dietary NMN intake protects obese diabetic db/db mice from obesity-related metabolic disorders, such as dyslipidemia, hepatic steatosis, hyperglycemia, and hyperinsulinemia. Methods: Five-week-old male db/db mice were randomly assigned to two groups and fed for four weeks either a control diet containing 7% corn oil and 0.1% cholesterol (CON group, n = 6) or a diet supplemented with 0.5% NMN (NMN group, n = 5). Results: After 4 weeks of feeding, dietary NMN intake alleviated obesity, hypertriglyceridemia, and hepatic triglyceride accumulation in db/db mice. Respiratory gas analysis indicated that dietary NMN intake significantly enhanced energy expenditure by suppressing carbohydrate oxidation and increasing fat oxidation after 3 weeks of feeding. Additionally, the suppression of the increase in plasma triglyceride (TG) levels by dietary NMN intake was attributable to a reduction in hepatic TG levels through the suppression of fatty acid synthesis and the enhancement of fatty acid β-oxidation in the liver. Furthermore, the improvement in hepatic fatty acid metabolism induced by dietary NMN intake was partially responsible for the significant increase in plasma adiponectin and soluble T-cadherin levels. Conclusions: This is the first report to show that dietary NMN intake but not oral administration in drinking water or intraperitoneal administration alleviates body fat mass and hypertriglyceridemia by enhancing energy expenditure, with preferential promotion of fat oxidation, the enhancement of hepatic lipolysis, and the suppression of hepatic lipogenesis in db/db mice. Full article
Show Figures

Graphical abstract

13 pages, 253 KiB  
Article
The Effects of SGLT2 Inhibitors on Lipid Profile and Kidney Function in Patients with Chronic Kidney Disease Regardless of Diabetes and Hypertension Status
by Selena Gajić, Stefan Janković, Milorad Stojadinović, Kristina Filić, Ana Bontić, Jelena Pavlović, Ivana Mrđa, Kristina Petrović, Lara Hadži-Tanović, Jelena Žunić, Mihajlo Kostić, Aleksandra Kezić and Marko Baralić
Metabolites 2025, 15(4), 271; https://doi.org/10.3390/metabo15040271 - 13 Apr 2025
Viewed by 527
Abstract
Background: Chronic kidney disease (CKD) is a progressive, irreversible impairment of kidney function due to various etiologies. Numerous studies have shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) slow the progression of CKD, due to their pleiotropic effects. Therefore, there has been an increase in [...] Read more.
Background: Chronic kidney disease (CKD) is a progressive, irreversible impairment of kidney function due to various etiologies. Numerous studies have shown that sodium-glucose cotransporter-2 inhibitors (SGLT2i) slow the progression of CKD, due to their pleiotropic effects. Therefore, there has been an increase in interest in their effects not only on kidney function but also on other parameters in patients with CKD. The aim of the study was to examine the effects of SGLT2i on serum lipid values and kidney function in patients with CKD undergoing SGLT2i treatment. Methods: This study was a retrospective data analysis of 75 patients with CKD on SGLT2i treatment. We compared the values of biochemical parameters, renal function outcomes, and blood pressure at two time points: baseline and 24 months after. Results: Total cholesterol (Chol) significantly decreased in all patients, while triglyceride (Tg) and low-density lipoprotein cholesterol (LDLc) levels also decreased in all patients. High-density lipoprotein cholesterol (HDLc) levels increased, but this increase was not significant. Creatinine clearance (Ccr) significantly decreased, and serum urea (Sur) significantly increased in all patients. The proteinuria (Prt) levels did not change significantly. The results showed that the diastolic blood pressure (DBP) significantly decreased in all patients. Conclusions: This study showed that the use of SGLT2i reduced total Chol in all patients with CKD during the 24-month follow-up, regardless of diabetes mellitus (DM) status. No significant differences were observed for the Tg, LDLc, and HDLc values. Full article
Back to TopTop