Mathematical Analysis and Analytic Number Theory 2020

A special issue of Mathematics (ISSN 2227-7390).

Deadline for manuscript submissions: closed (31 October 2021) | Viewed by 32587

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada
Interests: mathematical analysis; applied mathematics; fractional calculus and its applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Investigations involving the theory and applications of the various tools and techniques of mathematical analysis and analytic number theory are remarkably widespread in many diverse areas of the mathematical, biological, physical, chemical, engineering, and statistical sciences. In this Special Issue, we welcome original as well as review-cum-expository research articles dealing with recent and new developments on the topics of mathematical analysis and analytic number theory as well as their multidisciplinary applications.

We look forward to receiving and editorially processing your contributions to this Special Issue.

With kind regards and thanks in advance for your contributions.

Prof. Dr. Rekha Srivastava
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Theory and applications of the tools and techniques of mathematical analysis
  • Theory and applications of the tools and techniques of analytic number theory
  • Applications involving special (or higher transcendental) functions
  • Applications involving fractional-order differential and differintegral equations
  • Applications involving q-Series and q-Polynomials
  • Applications involving special functions of mathematical physics and applied mathematics
  • Applications involving geometric function theory of complex analysis
  • Applications involving real analysis and operator theory

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 295 KiB  
Article
On an Extension of a Hardy–Hilbert-Type Inequality with Multi-Parameters
by Bicheng Yang, Michael Th. Rassias and Andrei Raigorodskii
Mathematics 2021, 9(19), 2432; https://doi.org/10.3390/math9192432 - 30 Sep 2021
Cited by 4 | Viewed by 1385
Abstract
Making use of weight coefficients as well as real/complex analytic methods, an extension of a Hardy–Hilbert-type inequality with a best possible constant factor and multiparameters is established. Equivalent forms, reverses, operator expression with the norm, and a few particular cases are also considered. [...] Read more.
Making use of weight coefficients as well as real/complex analytic methods, an extension of a Hardy–Hilbert-type inequality with a best possible constant factor and multiparameters is established. Equivalent forms, reverses, operator expression with the norm, and a few particular cases are also considered. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
13 pages, 321 KiB  
Article
Modified Operators Interpolating at Endpoints
by Ana Maria Acu, Ioan Raşa and Rekha Srivastava
Mathematics 2021, 9(17), 2051; https://doi.org/10.3390/math9172051 - 25 Aug 2021
Cited by 1 | Viewed by 1398
Abstract
Some classical operators (e.g., Bernstein) preserve the affine functions and consequently interpolate at the endpoints. Other classical operators (e.g., Bernstein–Durrmeyer) have been modified in order to preserve the affine functions. We propose a simpler modification with the effect that the new operators interpolate [...] Read more.
Some classical operators (e.g., Bernstein) preserve the affine functions and consequently interpolate at the endpoints. Other classical operators (e.g., Bernstein–Durrmeyer) have been modified in order to preserve the affine functions. We propose a simpler modification with the effect that the new operators interpolate at endpoints although they do not preserve the affine functions. We investigate the properties of these modified operators and obtain results concerning iterates and their limits, Voronovskaja-type results and estimates of several differences. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
Show Figures

Figure 1

16 pages, 297 KiB  
Article
A Certain Subclass of Multivalent Analytic Functions Defined by the q-Difference Operator Related to the Janowski Functions
by Bo Wang, Rekha Srivastava and Jin-Lin Liu
Mathematics 2021, 9(14), 1706; https://doi.org/10.3390/math9141706 - 20 Jul 2021
Cited by 10 | Viewed by 1648
Abstract
A class of p-valent analytic functions is introduced using the q-difference operator and the familiar Janowski functions. Several properties of functions in the class, such as the Fekete–Szegö inequality, coefficient estimates, necessary and sufficient conditions, distortion and growth theorems, radii of [...] Read more.
A class of p-valent analytic functions is introduced using the q-difference operator and the familiar Janowski functions. Several properties of functions in the class, such as the Fekete–Szegö inequality, coefficient estimates, necessary and sufficient conditions, distortion and growth theorems, radii of convexity and starlikeness, closure theorems and partial sums, are discussed in this paper. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
10 pages, 273 KiB  
Article
Some Families of Apéry-Like Fibonacci and Lucas Series
by Robert Frontczak, Hari Mohan Srivastava and Živorad Tomovski
Mathematics 2021, 9(14), 1621; https://doi.org/10.3390/math9141621 - 9 Jul 2021
Cited by 5 | Viewed by 1879
Abstract
In this paper, the authors investigate two special families of series involving the reciprocal central binomial coefficients and Lucas numbers. Connections with several familiar sums representing the integer-valued Riemann zeta function are also pointed out. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
20 pages, 294 KiB  
Article
Qualitative Analyses of Differential Systems with Time-Varying Delays via Lyapunov–Krasovskiĭ Approach
by Cemil Tunç, Osman Tunç, Yuanheng Wang and Jen-Chih Yao
Mathematics 2021, 9(11), 1196; https://doi.org/10.3390/math9111196 - 25 May 2021
Cited by 22 | Viewed by 1921
Abstract
In this paper, a class of systems of linear and non-linear delay differential equations (DDEs) of first order with time-varying delay is considered. We obtain new sufficient conditions for uniform asymptotic stability of zero solution, integrability of solutions of an unperturbed system and [...] Read more.
In this paper, a class of systems of linear and non-linear delay differential equations (DDEs) of first order with time-varying delay is considered. We obtain new sufficient conditions for uniform asymptotic stability of zero solution, integrability of solutions of an unperturbed system and boundedness of solutions of a perturbed system. We construct two appropriate Lyapunov–Krasovskiĭ functionals (LKFs) as the main tools in proofs. The technique of the proofs depends upon the Lyapunov–Krasovskiĭ method. For illustration, two examples are provided in particular cases. An advantage of the new LKFs used here is that they allow to eliminate using Gronwall’s inequality. When we compare our results with recent results in the literature, the established conditions are more general, less restrictive and optimal for applications. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
Show Figures

Figure 1

10 pages, 282 KiB  
Article
Repdigits as Product of Terms of k-Bonacci Sequences
by Petr Coufal and Pavel Trojovský
Mathematics 2021, 9(6), 682; https://doi.org/10.3390/math9060682 - 22 Mar 2021
Cited by 6 | Viewed by 1985
Abstract
For any integer k2, the sequence of the k-generalized Fibonacci numbers (or k-bonacci numbers) is defined by the k initial values [...] Read more.
For any integer k2, the sequence of the k-generalized Fibonacci numbers (or k-bonacci numbers) is defined by the k initial values F(k2)(k)==F0(k)=0 and F1(k)=1 and such that each term afterwards is the sum of the k preceding ones. In this paper, we search for repdigits (i.e., a number whose decimal expansion is of the form aaa, with a[1,9]) in the sequence (Fn(k)Fn(k+m))n, for m[1,9]. This result generalizes a recent work of Bednařík and Trojovská (the case in which (k,m)=(2,1)). Our main tools are the transcendental method (for Diophantine equations) together with the theory of continued fractions (reduction method). Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
17 pages, 337 KiB  
Article
On Four Classical Measure Theorems
by Salvador López-Alfonso, Manuel López-Pellicer and Santiago Moll-López
Mathematics 2021, 9(5), 526; https://doi.org/10.3390/math9050526 - 3 Mar 2021
Cited by 2 | Viewed by 1422
Abstract
A subset B of an algebra A of subsets of a set Ω has property (N) if each B-pointwise bounded sequence of the Banach space ba(A) is bounded in ba(A), where [...] Read more.
A subset B of an algebra A of subsets of a set Ω has property (N) if each B-pointwise bounded sequence of the Banach space ba(A) is bounded in ba(A), where ba(A) is the Banach space of real or complex bounded finitely additive measures defined on A endowed with the variation norm. B has property (G) [(VHS)] if for each bounded sequence [if for each sequence] in ba(A) the B-pointwise convergence implies its weak convergence. B has property (sN) [(sG) or (sVHS)] if every increasing covering {Bn:nN} of B contains a set Bp with property (N) [(G) or (VHS)], and B has property (wN) [(wG) or (wVHS)] if every increasing web {Bn1n2nm:niN,1im,mN} of B contains a strand {Bp1p2pm:mN} formed by elements Bp1p2pm with property (N) [(G) or (VHS)] for every mN. The classical theorems of Nikodým–Grothendieck, Valdivia, Grothendieck and Vitali–Hahn–Saks say, respectively, that every σ-algebra has properties (N), (sN), (G) and (VHS). Valdivia’s theorem was obtained through theorems of barrelled spaces. Recently, it has been proved that every σ-algebra has property (wN) and several applications of this strong Nikodým type property have been provided. In this survey paper we obtain a proof of the property (wN) of a σ-algebra independent of the theory of locally convex barrelled spaces which depends on elementary basic results of Measure theory and Banach space theory. Moreover we prove that a subset B of an algebra A has property (wWHS) if and only if B has property (wN) and A has property (G). Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
24 pages, 379 KiB  
Article
On Coding by (2,q)-Distance Fibonacci Numbers
by Ivana Matoušová and Pavel Trojovský
Mathematics 2020, 8(11), 2058; https://doi.org/10.3390/math8112058 - 18 Nov 2020
Cited by 4 | Viewed by 2620
Abstract
In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients into recurrence [...] Read more.
In 2006, A. Stakhov introduced a new coding/decoding process based on generating matrices of the Fibonacci p-numbers, which he called the Fibonacci coding/decoding method. Stakhov’s papers have motivated many other scientists to seek certain generalizations by introducing new additional coefficients into recurrence of Fibonacci p-numbers. In 2013, I. Włoch et al. studied (2,q)-distance Fibonacci numbers F2(q,n) and found some of their combinatorial properties. In this paper, we state a new coding theory based on the sequence (Tq(n))n=, which is an extension of Włoch’s sequence (F2(q,n))n=0. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
Show Figures

Figure 1

17 pages, 326 KiB  
Article
A New Representation of the Generalized Krätzel Function
by Asifa Tassaddiq
Mathematics 2020, 8(11), 2009; https://doi.org/10.3390/math8112009 - 11 Nov 2020
Cited by 6 | Viewed by 1968
Abstract
The confluence of distributions (generalized functions) with integral transforms has become a remarkably powerful tool to address important unsolved problems. The purpose of the present study is to investigate a distributional representation of the generalized Krätzel function. Hence, a new definition of these [...] Read more.
The confluence of distributions (generalized functions) with integral transforms has become a remarkably powerful tool to address important unsolved problems. The purpose of the present study is to investigate a distributional representation of the generalized Krätzel function. Hence, a new definition of these functions is formulated over a particular set of test functions. This is validated using the classical Fourier transform. The results lead to a novel extension of Krätzel functions by introducing distributions in terms of the delta function. A new version of the generalized Krätzel integral transform emerges as a natural consequence of this research. The relationship between the Krätzel function and the H-function is also explored to study new identities. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
4 pages, 702 KiB  
Article
An Alternating Sum of Fibonacci and Lucas Numbers of Order k
by Spiros D. Dafnis, Andreas N. Philippou and Ioannis E. Livieris
Mathematics 2020, 8(9), 1487; https://doi.org/10.3390/math8091487 - 3 Sep 2020
Cited by 3 | Viewed by 2254
Abstract
During the last decade, many researchers have focused on proving identities that reveal the relation between Fibonacci and Lucas numbers. Very recently, one of these identities has been generalized to the case of Fibonacci and Lucas numbers of order k. In the [...] Read more.
During the last decade, many researchers have focused on proving identities that reveal the relation between Fibonacci and Lucas numbers. Very recently, one of these identities has been generalized to the case of Fibonacci and Lucas numbers of order k. In the present work, we state and prove a new identity regarding an alternating sum of Fibonacci and Lucas numbers of order k. Our result generalizes recent works in this direction. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
10 pages, 230 KiB  
Article
On the Quartic Residues and Their New Distribution Properties
by Juanli Su and Jiafan Zhang
Mathematics 2020, 8(8), 1337; https://doi.org/10.3390/math8081337 - 11 Aug 2020
Cited by 2 | Viewed by 1709
Abstract
In this paper, we use the analytic methods, the properties of the fourth-order characters, and the estimate for character sums to study the computational problems of one kind of special quartic residues modulo p, and give an exact calculation formula and asymptotic [...] Read more.
In this paper, we use the analytic methods, the properties of the fourth-order characters, and the estimate for character sums to study the computational problems of one kind of special quartic residues modulo p, and give an exact calculation formula and asymptotic formula for their counting functions. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
22 pages, 320 KiB  
Article
On the Generalized Riesz Derivative
by Chenkuan Li and Joshua Beaudin
Mathematics 2020, 8(7), 1089; https://doi.org/10.3390/math8071089 - 3 Jul 2020
Cited by 2 | Viewed by 2331
Abstract
The goal of this paper is to construct an integral representation for the generalized Riesz derivative R Z D x 2 s u ( x ) for k < s < k + 1 with k = 0 , 1 , , [...] Read more.
The goal of this paper is to construct an integral representation for the generalized Riesz derivative R Z D x 2 s u ( x ) for k < s < k + 1 with k = 0 , 1 , , which is proved to be a one-to-one and linearly continuous mapping from the normed space W k + 1 ( R ) to the Banach space C ( R ) . In addition, we show that R Z D x 2 s u ( x ) is continuous at the end points and well defined for s = 1 2 + k . Furthermore, we extend the generalized Riesz derivative R Z D x 2 s u ( x ) to the space C k ( R n ) , where k is an n-tuple of nonnegative integers, based on the normalization of distribution and surface integrals over the unit sphere. Finally, several examples are presented to demonstrate computations for obtaining the generalized Riesz derivatives. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
11 pages, 255 KiB  
Article
A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree
by Paolo Emilio Ricci and Rekha Srivastava
Mathematics 2020, 8(6), 978; https://doi.org/10.3390/math8060978 - 16 Jun 2020
Cited by 3 | Viewed by 1559
Abstract
Here, in this paper, the second-kind multivariate pseudo-Chebyshev functions of fractional degree are introduced by using the Dunford–Taylor integral. As an application, the problem of finding matrix roots for a wide class of non-singular complex matrices has been considered. The principal value of [...] Read more.
Here, in this paper, the second-kind multivariate pseudo-Chebyshev functions of fractional degree are introduced by using the Dunford–Taylor integral. As an application, the problem of finding matrix roots for a wide class of non-singular complex matrices has been considered. The principal value of the fixed matrix root is determined. In general, by changing the determinations of the numerical roots involved, we could find n r roots for the n-th root of an r × r matrix. The exceptional cases for which there are infinitely many roots, or no roots at all, are obviously excluded. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
11 pages, 276 KiB  
Article
Better Approaches for n-Times Differentiable Convex Functions
by Praveen Agarwal, Mahir Kadakal, İmdat İşcan and Yu-Ming Chu
Mathematics 2020, 8(6), 950; https://doi.org/10.3390/math8060950 - 10 Jun 2020
Cited by 30 | Viewed by 1925
Abstract
In this work, by using an integral identity together with the Hölder–İşcan inequality we establish several new inequalities for n-times differentiable convex and concave mappings. Furthermore, various applications for some special means as arithmetic, geometric, and logarithmic are given. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
11 pages, 287 KiB  
Article
A Certain Mean Square Value Involving Dirichlet L-Functions
by Wenpeng Zhang and Di Han
Mathematics 2020, 8(6), 948; https://doi.org/10.3390/math8060948 - 9 Jun 2020
Cited by 1 | Viewed by 2102
Abstract
The main purpose of this article is using the elementary methods, the properties of Dirichlet L-functions to study the computational problem of a certain mean square value involving Dirichlet L-functions at positive integer points, and give some exact calculating formulae. As [...] Read more.
The main purpose of this article is using the elementary methods, the properties of Dirichlet L-functions to study the computational problem of a certain mean square value involving Dirichlet L-functions at positive integer points, and give some exact calculating formulae. As some applications, we obtain some interesting identities and inequalities involving character sums and trigonometric sums. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
18 pages, 331 KiB  
Article
Fekete-Szegö Type Problems and Their Applications for a Subclass of q-Starlike Functions with Respect to Symmetrical Points
by Hari Mohan Srivastava, Nazar Khan, Maslina Darus, Shahid Khan, Qazi Zahoor Ahmad and Saqib Hussain
Mathematics 2020, 8(5), 842; https://doi.org/10.3390/math8050842 - 22 May 2020
Cited by 32 | Viewed by 2924
Abstract
In this article, by using the concept of the quantum (or q-) calculus and a general conic domain Ω k , q , we study a new subclass of normalized analytic functions with respect to symmetrical points in an open unit disk. [...] Read more.
In this article, by using the concept of the quantum (or q-) calculus and a general conic domain Ω k , q , we study a new subclass of normalized analytic functions with respect to symmetrical points in an open unit disk. We solve the Fekete-Szegö type problems for this newly-defined subclass of analytic functions. We also discuss some applications of the main results by using a q-Bernardi integral operator. Full article
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2020)
Back to TopTop