A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree
Abstract
:1. Introduction
2. Basic Definitions
2.1. Recalling the Functions
2.2. Matrix Powers Representation
2.3. The Dunford–Taylor Integral
2.4. Integral Representation of the Functions
3. Multivariate Second-Kind Chebyshev Polynomials
4. Extension to the Rational Case
5. The Three-Dimensional Case
5.1. Numerical Examples
5.1.1. A Worked Example
5.1.2. A few Other Examples
- Consider the matrix:The invariants are:A square root is given by
- Consider the following matrix:The invariants are given below:A square root is given by
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Srivastava, H.M.; Kizilateş, C. A parametric kind of the Fubini-type polynomials. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 3253–3267. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ricci, P.E.; Natalini, P. A family of complex Appell polynomial sets. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 2359–2371. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Riyasat, M.; Khan, S.; Araci, S.; Acikgoz, M. A new approach to Legendre-truncated-exponential-based Sheffer sequences via Riordan arrays. Appl. Math. Comput. 2020, 369, 124683. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Çetinkaya, A.; Kımaz, O. A certain generalized Pochhammer symbol and its applications to hypergeometric functions. Appl. Math. Comput. 2014, 226, 484–491. [Google Scholar] [CrossRef]
- Srivastava, R.; Cho, N.E. Generating functions for a certain class of incomplete hypergeometric polynomials. Appl. Math. Comput. 2012, 219, 3219–3225. [Google Scholar] [CrossRef]
- Srivastava, R. Some properties of a family of incomplete hypergeometric functions. Russ. J. Math. Phys. 2013, 20, 121–128. [Google Scholar] [CrossRef]
- Srivastava, R.; Cho, N.E. Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials. Appl. Math. Comput. 2014, 234, 277–285. [Google Scholar] [CrossRef]
- Srivastava, R. Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions. Appl. Math. Comput. 2014, 243, 132–137. [Google Scholar] [CrossRef]
- Ricci, P.E. Sulle potenze di una matrice. Rend. Mat. 1976, 9, 179–194. [Google Scholar]
- Ricci, P.E. I polinomi di Tchebycheff in più variabili. Rend. Mat. 1978, 11, 295–327. [Google Scholar]
- Ricci, P.E. Complex spirals and pseudo-Chebyshev polynomials of fractional degree. Symmetry 2018, 10, 671. [Google Scholar] [CrossRef] [Green Version]
- Ricci, P.E. A survey on pseudo-Chebyshev functions. 4Open 2020, 3, 1–19. [Google Scholar] [CrossRef]
- Bruschi, M.; Ricci, P.E. I polinomi di Lucas e di Tchebycheff in più variabili. Rend. Mat. 1980, 13, 507–530. [Google Scholar]
- Gantmacher, F.R. The Theory of Matrices; Chelsea Publishing Company: New York, NY, USA, 1959. [Google Scholar]
- Lutkepohl, H. Handbook of Matrices; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Yood, B. Rootless matrices. Math. Mag. 2002, 75, 219–223. [Google Scholar] [CrossRef]
- Mitchell, D.W. Using Pythagorean triples to generate square roots of I2. Math. Gaz. 2003, 87, 499–500. [Google Scholar] [CrossRef]
- Al-Tamimi, I.A. The square roots of 2×2 invertible matrices. Adv. Algebra 2010, 3, 15–18. [Google Scholar]
- Rao, S.S.; Jagadeeshwar, P.; Somasekhar, K. On the square root of a matrix. J. Glob. Res. Math. Arch. 2013, 1, 30–33. [Google Scholar]
- Psarrakos, P.J. On the mth roots of a complex matrix. Electron. J. Linear Alg. 2002, 9, 32–41. [Google Scholar]
- DJoiţa, M.; Jäntschi, L. Extending the characteristic polynomial for characterization of C20 Fullerene Congeners. Mathematics 2017, 5, 1–12. [Google Scholar]
- Bruschi, M.; Ricci, P.E. An explicit formula for f(A) and the generating function of the generalized Lucas polynomials. SIAM J. Math. Anal. 1982, 13, 162–165. [Google Scholar] [CrossRef]
- Raghavacharyulu, I.V.V.; Tekumalla, A.R. Solution of the Difference Equations of Generalized Lucas Polynomials. J. Math. Phys. 1972, 13, 321–324. [Google Scholar] [CrossRef]
- Brenner, J.L. Linear recurrence relations. Amer. Math. Mon. 1954, 61, 171–173. [Google Scholar] [CrossRef]
- Lucas, É. Théorie des Nombres; Gauthier-Villars: Paris, France, 1891. [Google Scholar]
- Lidl, R.; Wells, C. Chebyshev polynomials in several variables. J. Reine Angew. Math. 1972, 255, 104–111. [Google Scholar]
- Lidl, R. Tschebyscheffpolynome in mehreren variabelen. J. Reine Angew. Math. 1975, 273, 178–198. [Google Scholar]
- Dunn, K.B.; Lidl, R. Multi-dimensional generalizations of the Chebyshev polynomials. I and II. Proc. Jpn. Acad. Ser. A Math. Sci. 1980, 56, 154–165. [Google Scholar] [CrossRef]
- Beerends, R.J. Chebyshev polynomials in several variables and the radial part of the Laplace-Beltrami operator. Trans.Amer. Math. Soc. 1991, 328, 779–814. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1966. [Google Scholar]
- Riesz, F.; Nagy, B.S. Functional Analysis; Dover: New York, NY, USA, 1990. [Google Scholar]
- Fantappiè, L. I massimi e i minimi dei funzionali analitici reali. Atti Acc. Naz. Lincei Rend. Sci. Fis. Mat. Nat. 1930, 8, 296–301. [Google Scholar]
- Hirsch, M.W.; Smale, S.; Devaney, R.L. Differential Equations, Dynamical Systems: An Introduction to Chaos; Academic Press: San Diego, CA, USA; Elsevier Science B.V.: London, UK, 2003. [Google Scholar]
- Scheinerman, E.R. Invitation to Dynamical Systems; Dover Publishing Company: New York, NY, USA, 2012. [Google Scholar]
- Natalini, P.; Ricci, P.E. A “hard to die” series expansion and Lucas polynomials of the second kind. Appl. Math. 2015, 6, 1235–1240. [Google Scholar] [CrossRef] [Green Version]
- Natalini, P.; Ricci, P.E. Solution of linear dynamical systems using Lucas polynomials of the second kind. Appl. Math. 2016, 7, 616–628. [Google Scholar] [CrossRef] [Green Version]
- Caratelli, D.; Srivastava, R.; Ricci, P.E. Methods for computing matrix roots of a non-singular complex matrix. In Proceedings of the AMINSE 20, Tbilisi, Georgia, 17–20 June 2020. submitted. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, P.E.; Srivastava, R. A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree. Mathematics 2020, 8, 978. https://doi.org/10.3390/math8060978
Ricci PE, Srivastava R. A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree. Mathematics. 2020; 8(6):978. https://doi.org/10.3390/math8060978
Chicago/Turabian StyleRicci, Paolo Emilio, and Rekha Srivastava. 2020. "A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree" Mathematics 8, no. 6: 978. https://doi.org/10.3390/math8060978
APA StyleRicci, P. E., & Srivastava, R. (2020). A Study of the Second-Kind Multivariate Pseudo-Chebyshev Functions of Fractional Degree. Mathematics, 8(6), 978. https://doi.org/10.3390/math8060978